Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A mutation in the gene encoding the α2 chain of the fibril-associated collagen IX, COL9A2, causes multiple epiphyseal dysplasia (EDM2)

Abstract

Multiple epiphyseal dysplasia, an autosomal dominant disease, is among the more common inherited osteochondrodysplasias. Symptoms range from stiffness and pain in large joints to frank osteoarthritis associated with short stature and stubby fingers1–7. Linkage analyses of multiple epiphyseal dysplasia families suggest at least three loci. One locus, EDM1, maps to chromosome 19 (ref. 4), and is caused by mutations in cartilage oligomeric matrix protein (COMP)8. Mutations in COMP have also been identified in patients with pseudoachon-droplasia (PSACH)8,9, consistent with previous analyses which suggested that EDM1 and PSACH could be allelic disorders10. A second locus, EDM2, maps to chromosome 1 in the vicinity of the COL9A2 gene6. Finally, exclusion of EDM1 and EDM2 in other families suggests the existence of at least one additional locus11. We now show that affected members of a large kindred with multiple epiphyseal dysplasia linked to the EDM2 locus are heterozygous for a splice site mutation within COL9A2, causing exon skipping during RNA splicing and an in-frame loss of 12 amino acid residues within the α2(IX) collagen chain. The results provide the first in vivo evidence for the role of collagen IX in human articular cartilage.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barrie, H., Carter, C. & Sutcliffe, J. Multiple epiphyseal dysplasia. Br. Med. J. 2, 133–137 (1958).

    Article  CAS  Google Scholar 

  2. Fairbank, T. Dysplasia epiphysialis multiplex. Br. J. Surg. 34, 225–232 (1947).

    Article  CAS  Google Scholar 

  3. Ribbing, S. Studien über hereditäre multiple Epiphysenstörungen. Acta Radiol. Suppl. 34, 1–107 (1937).

    Google Scholar 

  4. Oehlmann, R. et al. Genetic linkage mapping of multiple epiphyseal dysplasia to the pericentromeric region of chromosome 19. Am. J. Hum. Genet. 54, 3–10 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Briggs, M.D. et al. Genetic linkage of pseudoachondnoplasia to markers in the pericentromeric region of chromosome 19. Genomics 18, 656–660 (1993).

    Article  CAS  Google Scholar 

  6. Briggs, M.D. et al. Genetic mapping of a locus for multiple epiphyseal dysplasia (EDM2) to a region of chromosome 1 containing a type IX collagen gene . Am. J. Hum. Genet. 55, 678–684 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Rimoin, D.L. et al. A large family with features of pseudoachondroplasia and multiple epiphyseal dysplasia: exclusion of seven candidate gene loci that encode proteins of the cartilage extracellular matrix. Am. J. Hum. Genet. 93, 236–242 (1994).

    Article  CAS  Google Scholar 

  8. Briggs, M.D. et al. Pseudoachondroplasia and multiple epiphyseal dysplasia due to mutations in the cartilage oligomeric matrix protein gene. Nature Genet. 10, 330–336 (1995).

    Article  CAS  Google Scholar 

  9. Hecht, J. et al. Mutations in exon 17B of cartilage oligomeric matrix protein (COMP) cause pseudoachondroplasia. Nature Genet. 10, 325–329 (1995).

    Article  CAS  Google Scholar 

  10. Stanescu, R. et al. Multiple epiphyseal dysplasia, Fairbank type: morphologic and biochemical study of cartilage. Am. J. Med. Genet. 45, 501–507 (1993).

    Article  CAS  Google Scholar 

  11. Deere, M. et al. Genetic heterogeneity in multiple epiphyseal dysplasia. Am. J. Hum. Genet. 56, 698–704 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Versteijlen, R.J., Zwemmer, A., Lorié, C.A.M. & Schuur, K.H. Multiple epiphyseal dysplasia complicated by severe osteochondritis dissecans of theknee. Incidence in two families. Skeletal Radiol. 17, 407–412 (1988).

    Article  Google Scholar 

  13. van Mourik, J.B.A., Schaap, C. & Nolen, A.J.G. Een Nederlandse familie met erfelijke gewrichtsklachten; multiple epifysaire dysplasie. Ned Tijdschr. Geneeskd. 137, 32–36 (1993).

    CAS  PubMed  Google Scholar 

  14. Byers, P.H. Disorders of collagen biosynthesis and structure. The metabolic and molecular bases of inherited disease, (eds Scriver, C.R. et al.) 4029–4078 (McGraw-Hill, New York, 1995).

    Google Scholar 

  15. Nakata, K. et al. Osteoarthritis associated with mild chondrodysplasia in transgenic mice expressing αc1(IX) collagen chains with a central deletion. Proc. Nati. Acad. Sci. USA 90, 2870–2874 (1993).

    Article  CAS  Google Scholar 

  16. Fässler, R. et al. Mice lacking α1(IX) collagen develop noninflammatory degenerative joint disease. Proc. Natl. Acad. Sci. USA 91, 5070–5074 (1994).

    Article  Google Scholar 

  17. Howell, D.S., Treadwell, B.J. & Trippel, S.B. Etiopathogenesis of Osteoarthritis. Osteoarthritis: Diagnosis and Medical/Surgical Management, (eds Moskowfe, R.W. et al.) 233–252 (W.B. Saunders, Philadelphia, 1992).

    Google Scholar 

  18. Stanescu, V., Stanescu, R., Stanescu, R. & Maroteaux, P. Articular degeneration as a sequela of osteochondrodysplasias. Clin. Rheum. Dis. 11, 239–270 (1985).

    CAS  PubMed  Google Scholar 

  19. van der Rest, M. & Mayne, R. Type IX collagen proteoglycan from cartilage is covatently cross-linked to type II collagen. J. Biol. Chem. 263, 1615–1618 (1988).

    CAS  PubMed  Google Scholar 

  20. Wu, J.J., Woods, P.E. & Eyre, D.R. Identification of cross-linking sites in bovine cartilage type IX collagen reveals an antiparalld type ll-type IX molecular relationship and type IX to type II bonding. J. Biol. Chem. 267, 23007–23014 (1992).

    CAS  PubMed  Google Scholar 

  21. Shaw, L.M. & Olsen, B.R. Collagens in the FACIT group: diverse molecular bridges in extracellular matrices. Trends Biochem. Sci. 16, 191–194 (1991).

    Article  CAS  Google Scholar 

  22. Vaughan, L. et al. D-periodic distribution of collagen type IX along cartilage fibrils. J. Cell Biol. 106, 991–997 (1988).

    Article  CAS  Google Scholar 

  23. Miller, S.A., Dykes, D.D. & Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucl. Acids Res. 16, 1215 (1988).

    Article  CAS  Google Scholar 

  24. Lathrop, G.M., Lalouel, J.M., Julier, C. & Ott, J. Multilocus linkage analysis in humans: detection of linkage and estimation of recombination. Am. J. Hum. Genet. 37, 482–498 (1988).

    Google Scholar 

  25. Chomczynski, P. & Sacchi, K. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

  26. Perälä, M. et al. Molecular cloning of the human α2(IX) collagen cDNA and assignment of the human COL9A2 gene to chromosome 1. FEBS Lett. 319, 177–180 (1993).

    Article  Google Scholar 

  27. Perälä, M. et al. The exon structure of the mouse α2(IX) collagen gene shows unexpected divergence from the chick gene. J. Biol. Chem. 269, 5064–5071 (1994).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muragaki, Y., Mariman, E., van Beersum, S. et al. A mutation in the gene encoding the α2 chain of the fibril-associated collagen IX, COL9A2, causes multiple epiphyseal dysplasia (EDM2). Nat Genet 12, 103–105 (1996). https://doi.org/10.1038/ng0196-103

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0196-103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing