Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A subterminal satellite located adjacent to telomeres in chimpanzees is absent from the human genome

Abstract

One of the significant unresolved differences between the karyotypes of humans and African apes is the presence of positively staining G–bands at the ends of many chromosome arms in the chimpanzee and gorilla but absent from human chromosomes. Using a telomere anchored PCR strategy, we have isolated DNA from a subterminal satellite, composed of a 32 basepair A–T rich repeat, from the chimpanzee genome that hybridizes to all the additional terminal bands and at two interstitial sites. The satellite is more abundant in gorillas and is not detected in humans or orang–utans. Furthermore, there is no similarity between other chimpanzee telomere–junction clones and human subterminal sequences, and therefore the organization of sequences adjacent to telomeres is very different between these closely related primates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Yunis, J.J. & Prakash, O. The origin of man: a chromosomal pictorial legacy. Science 215, 1525–1530 (1982).

    Article  CAS  Google Scholar 

  2. Ijdo, J.W., Baldini, A., Ward, D.C., Reeders, S.T. & Wells, R.A. Origin of human chromosome 2: and ancestral telomere-telomere fusion. Proc. natn. Aced. Set. U.S.A. 88, 9051–9055 (1991).

    Article  CAS  Google Scholar 

  3. Blackburn, E.H. Structure and function of telomeres. Nature 350, 569–573 (1991).

    Article  CAS  Google Scholar 

  4. Greider, C.W. & Blackburn, E.H. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337, 331–337 (1989).

    Article  CAS  Google Scholar 

  5. de Lange, T. et al. Structure and variability of human chromosome ends. Molec. cell. Bilol. 10, 518–527 (1990).

    Article  CAS  Google Scholar 

  6. Brown, W.R.A. et al. Structure and polymorphism of human telomere-associated DNA. Cell 63, 119–132 (1990).

    Article  CAS  Google Scholar 

  7. Cross, S. et al. The structure of a subterminal repeated sequence present on many human chromosomes. Nucl. Acids Res. 18, 6649–6657 (1990).

    Article  CAS  Google Scholar 

  8. Cheng, J.-F., Smith, C.L. & Cantor, C.R. Structural and transcriptional analysis of a human subtelomeric repeat. Nucl. Acids Res. 19, 149–153 (1991).

    Article  CAS  Google Scholar 

  9. Royle, N.J., Hill, M.C. & Jeffreys, A.J. Isolation of telomere Junction fragments by anchored polymerase chain reaction. Proc. Royal Soc. London: Series B. 247, 57–61 (1992).

    Article  CAS  Google Scholar 

  10. Wells, R.A., Germino, G.G., Krishna, S., Buckle, V.J. & Reeders, S.T. Telomere-related sequences at interstitial sites in the human genome. Genomics 8, 699–704 (1990).

    Article  CAS  Google Scholar 

  11. Wilkie, A.O. et al. Stable length polymorphism of up to 260kb at the tip of the short arm of human chromosome 16. Cell 64, 595–606 (1991).

    Article  CAS  Google Scholar 

  12. Meyne, J., Ratliff, R.L. & Moyzis, R.K. Conservation of the telomere sequence (TTAGGG)n among vertebrates. Proc. natn. Acad. Sci. U.S.A. 86, 7049–7053 (1989).

    Article  CAS  Google Scholar 

  13. Luke, S. & Verma, R.S. Telomeric repeat (TTAGGG)n sequences of human chromosomes are conserved in chimpanzee (Pan Troglodytes). Molec. gen. Genet. 237, 460–462 (1993).

    CAS  PubMed  Google Scholar 

  14. Goodman, M. et al. Primate evolution at the DNA level and a classification of Hominoids. J. molec. Evol. 30, 260–266 (1990).

    Article  CAS  Google Scholar 

  15. Andrews, P. Evolution and enviroment in the Hominoidea. Nature 360, 641–646 (1992).

    Article  CAS  Google Scholar 

  16. Gray, I.C. & Jeffreys, A.J. Evolutionary transience of hypervariable minisatellites in man and in primates Proc. Royal Soc. London Series B. 243, 241–253 (1991).

    Article  CAS  Google Scholar 

  17. Ely, J., Deka, R., Chakraborty, R. & Ferrell, R.E. Comparison of five tandem repeat loci between humans and chimpanzees. Genomics 14, 692–698 (1992).

    Article  CAS  Google Scholar 

  18. Jeffreys, A.J., Neumann, R. & Wilson, V. Repeat unit sequences variation in minisatellites: a novel source of DNA polymorphism for studying variation and mutation by single molecule analysis. Cell 60, 473–485 (1990).

    Article  CAS  Google Scholar 

  19. Royle, N.J., Clarkson, R.E., Wong, Z. & Jeffreys, A.J. Ciustering of hypervariable minisatellites in proterminal regions of human autosomes. Genomics 3, 352–360 (1988).

    Article  CAS  Google Scholar 

  20. Pinkel, D., Straume, T. & Gray, J.W. Cytogenetic analysis using quantitative, high-sensitvlty, fluoresence hybridization. Proc. natn. Acad. Sci. U.S.A 83, 2934–2938 (1986).

    Article  CAS  Google Scholar 

  21. Lichter, P. et al. High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247, 64–69 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Royle, N., Baird, D. & Jeffreys, A. A subterminal satellite located adjacent to telomeres in chimpanzees is absent from the human genome. Nat Genet 6, 52–56 (1994). https://doi.org/10.1038/ng0194-52

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0194-52

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing