Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Complex interactions between genes controlling trafficking in primary cilia

Abstract

Cilia-associated human genetic disorders are striking in the diversity of their abnormalities and their complex inheritance. Inactivation of the retrograde ciliary motor by mutations in DYNC2H1 causes skeletal dysplasias that have strongly variable expressivity. Here we define previously unknown genetic relationships between Dync2h1 and other genes required for ciliary trafficking. Mutations in mouse Dync2h1 disrupt cilia structure, block Sonic hedgehog signaling and cause midgestation lethality. Heterozygosity for Ift172, a gene required for anterograde ciliary trafficking, suppresses cilia phenotypes, Sonic hedgehog signaling defects and early lethality of Dync2h1 homozygotes. Ift122, like Dync2h1, is required for retrograde ciliary trafficking, but reduction of Ift122 gene dosage also suppresses the Dync2h1 phenotype. These genetic interactions illustrate the cell biology underlying ciliopathies and argue that mutations in intraflagellar transport genes cause their phenotypes because of their roles in cilia architecture rather than direct roles in signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutations in Dync2h1 disrupt Shh-dependent neural patterning and cilia morphology.
Figure 2: Hedgehog components accumulate in Dync2h1 mutant cilia.
Figure 3: Ift172 is a dominant suppressor of Dync2h1.
Figure 4: Neural patterning and cilia morphology in Dync2h1lln; Ift122sopb embryos.
Figure 5: Shh responsiveness in Dync2h1lln/lln; Ift122sopb/+ embryos.
Figure 6: Cilia morphology in Dync2h1lln/lln; Ift122sopb/+ compound mutants.

Similar content being viewed by others

References

  1. Badano, J.L. et al. Dissection of epistasis in oligogenic Bardet-Biedl syndrome. Nature 439, 326–330 (2006).

    Article  CAS  Google Scholar 

  2. Hoefele, J. et al. Evidence of oligogenic inheritance in nephronophthisis. J. Am. Soc. Nephrol. 18, 2789–2795 (2007).

    Article  CAS  Google Scholar 

  3. Katsanis, N. et al. Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder. Science 293, 2256–2259 (2001).

    Article  CAS  Google Scholar 

  4. Khanna, H. et al. A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies. Nat. Genet. 41, 739–745 (2009).

    Article  CAS  Google Scholar 

  5. Leitch, C.C. et al. Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet-Biedl syndrome. Nat. Genet. 40, 443–448 (2008).

    Article  CAS  Google Scholar 

  6. Baker, K. & Beales, P.L. Making sense of cilia in disease: the human ciliopathies. Am. J. Med. Genet. C. Semin. Med. Genet. 151C, 281–295 (2009).

    Article  CAS  Google Scholar 

  7. Gherman, A., Davis, E.E. & Katsanis, N. The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia. Nat. Genet. 38, 961–962 (2006).

    Article  CAS  Google Scholar 

  8. Inglis, P.N., Boroevich, K.A. & Leroux, M.R. Piecing together a ciliome. Trends Genet. 22, 491–500 (2006).

    Article  CAS  Google Scholar 

  9. Dagoneau, N. et al. DYNC2H1 mutations cause asphyxiating thoracic dystrophy and short rib-polydactyly syndrome, type III. Am. J. Hum. Genet. 84, 706–711 (2009).

    Article  CAS  Google Scholar 

  10. Merrill, A.E. et al. Ciliary abnormalities due to defects in the retrograde transport protein DYNC2H1 in short-rib polydactyly syndrome. Am. J. Hum. Genet. 84, 542–549 (2009).

    Article  CAS  Google Scholar 

  11. Pedersen, L.B. & Rosenbaum, J.L. Intraflagellar transport (IFT) role in ciliary assembly, resorption and signaling. Curr. Top. Dev. Biol. 85, 23–61 (2008).

    Article  CAS  Google Scholar 

  12. Ho, N.C., Francomano, C.A. & van Allen, M. Jeune asphyxiating thoracic dystrophy and short-rib polydactyly type III (Verma-Naumoff) are variants of the same disorder. Am. J. Med. Genet. 90, 310–314 (2000).

    Article  CAS  Google Scholar 

  13. Goetz, S.C. & Anderson, K.V. The primary cilium: a signaling centre during vertebrate development. Nat. Rev. Genet. 11, 331–344 (2010).

    Article  CAS  Google Scholar 

  14. Weatherbee, S.D., Niswander, L.A. & Anderson, K.V. A mouse model for Meckel syndrome reveals Mks1 is required for ciliogenesis and Hedgehog signaling. Hum. Mol. Genet. 18, 4565–4575 (2009).

    Article  CAS  Google Scholar 

  15. Huangfu, D. & Anderson, K.V. Cilia and Hedgehog responsiveness in the mouse. Proc. Natl. Acad. Sci. USA 102, 11325–11330 (2005).

    Article  CAS  Google Scholar 

  16. Huangfu, D. et al. Hedgehog signaling in the mouse requires intraflagellar transport proteins. Nature 426, 83–87 (2003).

    Article  CAS  Google Scholar 

  17. Rohatgi, R., Milenkovic, L. & Scott, M.P. Patched1 regulates Hedgehog signaling at the primary cilium. Science 317, 372–376 (2007).

    Article  CAS  Google Scholar 

  18. Corbit, K.C. et al. Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018–1021 (2005).

    Article  CAS  Google Scholar 

  19. Haycraft, C.J. et al. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet. 1, e53 (2005).

    Article  Google Scholar 

  20. Chen, M.H. et al. Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved. Genes Dev. 23, 1910–1928 (2009).

    Article  CAS  Google Scholar 

  21. Wen, X. et al. Kinetics of Hedgehog-dependent full-length Gli3 accumulation in primary cilia and subsequent degradation. Mol. Cell. Biol. 30, 1910–1922 (2010).

    Article  CAS  Google Scholar 

  22. May, S.R. et al. Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev. Biol. 287, 378–389 (2005).

    Article  CAS  Google Scholar 

  23. Ocbina, P.J. & Anderson, K.V. Intraflagellar transport, cilia, and mammalian Hedgehog signaling: analysis in mouse embryonic fibroblasts. Dev. Dyn. 237, 2030–2038 (2008).

    Article  Google Scholar 

  24. Tran, P.V. et al. THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia. Nat. Genet. 40, 403–410 (2008).

    Article  CAS  Google Scholar 

  25. Pazour, G.J., Dickert, B.L. & Witman, G.B. The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J. Cell Biol. 144, 473–481 (1999).

    Article  CAS  Google Scholar 

  26. Perrone, C.A. et al. A novel dynein light intermediate chain colocalizes with the retrograde motor for intraflagellar transport at sites of axoneme assembly in chlamydomonas and mammalian cells. Mol. Biol. Cell 14, 2041–2056 (2003).

    Article  CAS  Google Scholar 

  27. Porter, M.E., Bower, R., Knott, J.A., Byrd, P. & Dentler, W. Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. Mol. Biol. Cell 10, 693–712 (1999).

    Article  CAS  Google Scholar 

  28. Kim, J., Kato, M. & Beachy, P.A. Gli2 trafficking links Hedgehog-dependent activation of Smoothened in the primary cilium to transcriptional activation in the nucleus. Proc. Natl. Acad. Sci. USA 106, 21666–21671 (2009).

    Article  CAS  Google Scholar 

  29. Kamp, A. et al. Genome-wide identification of mouse congenital heart disease loci. Hum. Mol. Genet. 19, 3105–3113 (2010).

    Article  CAS  Google Scholar 

  30. Eggenschwiler, J.T., Espinoza, E. & Anderson, K.V. Rab23 is an essential negative regulator of the mouse Sonic Hedgehog signaling pathway. Nature 412, 194–198 (2001).

    Article  CAS  Google Scholar 

  31. Qin, J., Lin, Y., Norman, R.X., Ko, H.W. & Eggenschwiler, J.T. Intraflagellar transport protein 122 antagonizes Sonic Hedgehog signaling and controls ciliary localization of pathway components. Proc. Natl. Acad. Sci. USA 108, 1456–1461 (2011).

    Article  CAS  Google Scholar 

  32. Liu, A., Wang, B. & Niswander, L.A. Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development 132, 3103–3111 (2005).

    Article  CAS  Google Scholar 

  33. Iomini, C., Babaev-Khaimov, V., Sassaroli, M. & Piperno, G. Protein particles in Chlamydomonas flagella undergo a transport cycle consisting of four phases. J. Cell Biol. 153, 13–24 (2001).

    Article  CAS  Google Scholar 

  34. Iomini, C., Li, L., Esparza, J.M. & Dutcher, S.K. Retrograde intraflagellar transport mutants identify complex A proteins with multiple genetic interactions in Chlamydomonas reinhardtii. Genetics 183, 885–896 (2009).

    Article  CAS  Google Scholar 

  35. Cortellino, S. et al. Defective ciliogenesis, embryonic lethality and severe impairment of the Sonic Hedgehog pathway caused by inactivation of the mouse complex A intraflagellar transport gene Ift122/Wdr10, partially overlapping with the DNA repair gene Med1/Mbd4. Dev. Biol. 325, 225–237 (2009).

    Article  CAS  Google Scholar 

  36. Mukhopadhyay, S. et al. TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia. Genes Dev. 24, 2180–2193 (2010).

    Article  CAS  Google Scholar 

  37. Piperno, G. et al. Distinct mutants of retrograde intraflagellar transport (IFT) share similar morphological and molecular defects. J. Cell Biol. 143, 1591–1601 (1998).

    Article  CAS  Google Scholar 

  38. Walczak-Sztulpa, J. et al. Cranioectodermal Dysplasia, Sensenbrenner syndrome, is a ciliopathy caused by mutations in the IFT122 gene. Am. J. Hum. Genet. 86, 949–956 (2010).

    Article  CAS  Google Scholar 

  39. Zaghloul, N.A. & Katsanis, N. Functional modules, mutational load and human genetic disease. Trends Genet. 26, 168–176 (2010).

    Article  CAS  Google Scholar 

  40. Cho, A., Ko, H.W. & Eggenschwiler, J.T. FKBP8 cell-autonomously controls neural tube patterning through a Gli2- and Kif3a-dependent mechanism. Dev. Biol. 321, 27–39 (2008).

    Article  CAS  Google Scholar 

  41. Mikami, A. et al. Molecular structure of cytoplasmic dynein 2 and its distribution in neuronal and ciliated cells. J. Cell Sci. 115, 4801–4808 (2002).

    Article  CAS  Google Scholar 

  42. Liem, K.F. Jr., He, M., Ocbina, P.J. & Anderson, K.V. Mouse Kif7/Costal2 is a cilia-associated protein that regulates Sonic Hedgehog signaling. Proc. Natl. Acad. Sci. USA 106, 13377–13382 (2009).

    Article  CAS  Google Scholar 

  43. Haycraft, C.J. et al. Intraflagellar transport is essential for endochondral bone formation. Development 134, 307–316 (2007).

    Article  CAS  Google Scholar 

  44. Sakai, K. & Miyazaki, J. A transgenic mouse line that retains Cre recombinase activity in mature oocytes irrespective of the Cre transgene transmission. Biochem. Biophys. Res. Commun. 237, 318–324 (1997).

    Article  CAS  Google Scholar 

  45. Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic Hedgehog gene function. Nature 383, 407–413 (1996).

    Article  CAS  Google Scholar 

  46. Mo, R. et al. Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development 124, 113–123 (1997).

    CAS  Google Scholar 

  47. Goodrich, L.V., Milenkovic, L., Higgins, K.M. & Scott, M.P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113 (1997).

    Article  CAS  Google Scholar 

  48. Litingtung, Y. & Chiang, C. Specification of ventral neuron types is mediated by an antagonistic interaction between Shh and Gli3. Nat. Neurosci. 3, 979–985 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Vallee (Columbia University College of Physicians and Surgeons) for the Dync2h1 antibody, R. Rohatgi and M. Scott (Stanford University) for expression constructs used to generate antibodies against Smo and Ptch1, and S. Weatherbee for help in antibody production. We thank B. Yoder (University of Alabama at Birmingham) for the mouse Ift88 conditional allele and A. Joyner (Memorial Sloan-Kettering Cancer Center (MSKCC)) for Gli2 and Gli3XtJ mice. We acknowledge N. Lampen (MSKCC Electron Microscopy Facility) for technical support with scanning electron microscopy; Z. Lazar, Y. Romin and S. Fujisawa (MSKCC Molecular Cytology Core) for assistance with confocal microscopy and MetaMorph analysis, and S. Galdeen (Rockefeller University Bio-Imaging Resource Center) for assistance with DeltaVision microscopy. We are grateful to members of the Anderson lab and Timothy Bestor (Columbia University Medical Center) for helpful discussions and critical reading of the manuscript. We obtained monoclonal antibodies from the Developmental Studies Hybridoma Bank, which was developed under the auspices of the National Institute of Child Health and Human Development and is maintained by the Department of Biological Sciences, University of Iowa. This work was supported by the US National Institutes of Health R01 NS044385 to K.V.A.

Author information

Authors and Affiliations

Authors

Contributions

P.J.R.O. and K.V.A. conceived the experiments and wrote the manuscript. P.J.R.O. performed the experiments. J.T.E. helped write the manuscript and provided reagents. I.M. provided reagents.

Corresponding author

Correspondence to Kathryn V Anderson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Tables 1–4. (PDF 6815 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ocbina, P., Eggenschwiler, J., Moskowitz, I. et al. Complex interactions between genes controlling trafficking in primary cilia. Nat Genet 43, 547–553 (2011). https://doi.org/10.1038/ng.832

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.832

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing