Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes

Abstract

In mammals, mitochondrial DNA (mtDNA) sequence variants are observed to segregate rapidly between generations despite the high mtDNA copy number in the oocyte. This has led to the concept of a genetic bottleneck for the transmission of mtDNA1,2,3, but the mechanism remains contentious. Several studies have suggested that the bottleneck occurs during embryonic development, as a result of a marked reduction in germline mtDNA copy number4,5. Mitotic segregation of mtDNAs during preimplantation5, or during the expansion of primordial germ cells (PGCs) before they colonize the gonad4,5, is thought to account for the increase in genotypic variance observed among mature oocytes from heteroplasmic mothers. This view has, however, been challenged by studies suggesting that the bottleneck occurs without a reduction in germline mtDNA content6. To resolve this controversy, we measured mtDNA heteroplasmy and copy number in single germ cells isolated from heteroplasmic mice. By directly tracking the evolution of mtDNA genotypic variance during oogenesis, we show that the genetic bottleneck occurs during postnatal folliculogenesis and not during embryonic oogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changes in mtDNA copy number during female germline development.
Figure 2: Replicating mtDNA visualized in vivo by incorporation of BrdU.
Figure 3: Transmission electronmicroscopy and immunogold labeling in primary oocytes.
Figure 4: The distribution of mtDNA nucleoids in primary oocytes.
Figure 5: Model for the transmission of mtDNA in the female germline.

Similar content being viewed by others

References

  1. Hauswirth, W.W. & Laipis, P.J. Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc. Natl. Acad. Sci. USA 79, 4686–4690 (1982).

    Article  CAS  Google Scholar 

  2. Olivo, P.D., Van de Walle, M.J., Laipis, P.J. & Hauswirth, W.W. Nucleotide sequence evidence for rapid genotypic shifts in the bovine mitochondrial DNA D-loop. Nature 306, 400–402 (1983).

    Article  CAS  Google Scholar 

  3. Laipis, P.J., Van de Walle, M.J. & Hauswirth, W.W. Unequal partitioning of bovine mitochondrial genotypes among siblings. Proc. Natl. Acad. Sci. USA 85, 8107–8110 (1988).

    Article  CAS  Google Scholar 

  4. Jenuth, J.P., Peterson, A.C., Fu, K. & Shoubridge, E.A. Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat. Genet. 14, 146–151 (1996).

    Article  CAS  Google Scholar 

  5. Cree, L.M. et al. A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat. Genet. 40, 249–254 (2008).

    Article  CAS  Google Scholar 

  6. Cao, L. et al. The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat. Genet. 39, 386–390 (2007).

    Article  CAS  Google Scholar 

  7. Jansen, R.P. Germline passage of mitochondria: quantitative considerations and possible embryological sequelae. Hum. Reprod. 15 Suppl 2, 112–128 (2000).

    Article  Google Scholar 

  8. Michaels, G.S., Hauswirth, W.W. & Laipis, P.J. Mitochondrial DNA copy number in bovine oocytes and somatic cells. Dev. Biol. 94, 246–251 (1982).

    Article  CAS  Google Scholar 

  9. Yeom, Y.I. et al. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development 122, 881–894 (1996).

    CAS  PubMed  Google Scholar 

  10. Chiquoine, A.D. The identification, origin, and migration of the primordial germ cells in the mouse embryo. Anat. Rec. 118, 135–146 (1954).

    Article  CAS  Google Scholar 

  11. Hayashi, K., de Sousa Lopes, S.M. & Surani, M.A. Germ cell specification in mice. Science 316, 394–396 (2007).

    Article  CAS  Google Scholar 

  12. Snow, M.H. Gastrulation in the mouse: Growth and regionalization of the epiblast. J. Embryol. Exp. Morphol. 42, 293–303 (1977).

    Google Scholar 

  13. Kucej, M. & Butow, R.A. Evolutionary tinkering with mitochondrial nucleoids. Trends Cell Biol. 17, 586–592 (2007).

    Article  CAS  Google Scholar 

  14. Kaufman, B.A. et al. The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol. Biol. Cell 18, 3225–3236 (2007).

    Article  CAS  Google Scholar 

  15. Legros, F., Malka, F., Frachon, P., Lombes, A. & Rojo, M. Organization and dynamics of human mitochondrial DNA. J. Cell Sci. 117, 2653–2662 (2004).

    Article  CAS  Google Scholar 

  16. Kloc, M., Bilinski, S. & Etkin, L.D. The Balbiani body and germ cell determinants: 150 years later. Curr. Top. Dev. Biol. 59, 1–36 (2004).

    Article  CAS  Google Scholar 

  17. Pepling, M.E., Wilhelm, J.E., O'Hara, A.L., Gephardt, G.W. & Spradling, A.C. Mouse oocytes within germ cell cysts and primordial follicles contain a Balbiani body. Proc. Natl. Acad. Sci. USA 104, 187–192 (2007).

    Article  CAS  Google Scholar 

  18. Cox, R.T. & Spradling, A.C. A Balbiani body and the fusome mediate mitochondrial inheritance during Drosophila oogenesis. Development 130, 1579–1590 (2003).

    Article  CAS  Google Scholar 

  19. Fan, W. et al. A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 319, 958–962 (2008).

    Article  CAS  Google Scholar 

  20. Stewart, J.B. et al. Strong purifying selection in transmission of mitochondrial DNA. PLoS Biol. 6, e10 (2008).

    Article  Google Scholar 

  21. Shoubridge, E.A. & Wai, T. Sidestepping mutational meltdown. Science 319, 914–915 (2008).

    Article  CAS  Google Scholar 

  22. Zhang, Y.H. et al. Mouth cell collection device for newborn mice. Mol. Genet. Metab. 89, 164–167 (2006).

    Article  CAS  Google Scholar 

  23. El Shourbagy, S.H., Spikings, E.C., Freitas, M. & St John, J.C. Mitochondria directly influence fertilisation outcome in the pig. Reproduction 131, 233–245 (2006).

    Article  CAS  Google Scholar 

  24. Ramakers, C., Ruijter, J.M., Deprez, R.H. & Moorman, A.F. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 339, 62–66 (2003).

    Article  CAS  Google Scholar 

  25. Battersby, B.J., Redpath, M.E. & Shoubridge, E.A. Mitochondrial DNA segregation in hematopoietic lineages does not depend on MHC presentation of mitochondrially encoded peptides. Hum. Mol. Genet. 14, 2587–2594 (2005).

    Article  CAS  Google Scholar 

  26. McKee, M.D. & Nanci, A. Postembedding colloidal-gold immunocytochemistry of noncollagenous extracellular matrix proteins in mineralized tissues. Microsc. Res. Tech. 31, 44–62 (1995).

    Article  CAS  Google Scholar 

  27. Brown, M.B. & Forsythe, A.B. Robust tests for the equality of variances. J. Am. Stat. Assoc. 69, 364–367 (1974).

    Article  Google Scholar 

  28. Pan, G. Confidence intervals for comparing two scale parameters based on Levene's statistics. J. Nonparam. Stat. 14, 459–476 (2007).

    Article  Google Scholar 

  29. Lim, T.-S. & Loh, W.-Y. Acomparison of tests of equality of variances. Comput. Stat. Data Anal. 22, 287–301 (1995).

    Article  Google Scholar 

  30. Battersby, B.J., Loredo-Osti, J.C. & Shoubridge, E.A. Nuclear genetic control of mitochondrial DNA segregation. Nat. Genet. 33, 183–186 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Villeneuve for help with confocal microscopy; J. Mui for assistance with electron microscopy; T. Johns, F. Jones and D. Sabour for technical assistance; and J. Correa for statistical design. We are grateful for antibodies directed against TFAM (B. Kaufman, MNI), mt-SSB (M. Zeviani, Instituto Carlo Besta) and POLG (W. Copeland, US National Institutes of Health). The OCT4Δ PE-EGFP mice were obtained from H.R. Scholer (University of Pennsylvania). This research was supported by the Canadian Institutes of Health Research and the US National Institutes of Health. E.A.S. is an International Scholar of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

T.W. and E.A.S. designed the study and wrote the manuscript. D.T. performed genotyping, and T.W. did all other experiments.

Corresponding author

Correspondence to Eric A Shoubridge.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Tables 1 and 2 (PDF 1950 kb)

Supplementary Video 1

3D view of the merged maximum projection close-up for primary oocytes in Fig. 2 (MOV 234 kb)

Supplementary Video 2

3D view of the merged maximum projection close-up for neonatal heart in Fig. 2 (MOV 463 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wai, T., Teoli, D. & Shoubridge, E. The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat Genet 40, 1484–1488 (2008). https://doi.org/10.1038/ng.258

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.258

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing