Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Many sequence variants affecting diversity of adult human height

Abstract

Adult human height is one of the classical complex human traits1. We searched for sequence variants that affect height by scanning the genomes of 25,174 Icelanders, 2,876 Dutch, 1,770 European Americans and 1,148 African Americans. We then combined these results with previously published results from the Diabetes Genetics Initiative on 3,024 Scandinavians2 and tested a selected subset of SNPs in 5,517 Danes. We identified 27 regions of the genome with one or more sequence variants showing significant association with height. The estimated effects per allele of these variants ranged between 0.3 and 0.6 cm and, taken together, they explain around 3.7% of the population variation in height. The genes neighboring the identified loci cluster in biological processes related to skeletal development and mitosis. Association to three previously reported loci are replicated in our analyses3,4,5, and the strongest association was with SNPs in the ZBTB38 gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantile-quantile plot of 304,226 SNPs in the genome-wide association scan for height.

Similar content being viewed by others

References

  1. Fisher, R.A. The correlation between relatives on the supposition of mendelian inheritance. Trans. R. Soc. Edinburgh 52, 399–433 (1918).

    Article  Google Scholar 

  2. Saxena, R. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331–1336 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Mamada, M. et al. Fibrillin I gene polymorphism is associated with tall stature of normal individuals. Hum. Genet. 120, 733–735 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Weedon, M.N. et al. A common variant of HMGA2 is associated with adult and childhood height in the general population. Nat. Genet. 39, 1245–1250 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sanna, S. et al. Common variants in the GDF5-UQCC region are associated with variation in human height. Nat. Genet. 40, 198–203 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carmichael, C.M. & McGue, M. A cross-sectional examination of height, weight, and body mass index in adult twins. J. Gerontol. A Biol. Sci. Med. Sci. 50, B237–B244 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Silventoinen, K. et al. Heritability of adult body height: a comparative study of twin cohorts in eight countries. Twin Res. 6, 399–408 (2003).

    Article  PubMed  Google Scholar 

  8. Ogden, C.L., Fryar, C.D., Carroll, M.D. & Flegal, K.M. Mean body weight, height, and body mass index, United States 1960–2002. Advance data from vital and health statistics 347 (2004).

  9. van der Eerden, B.C., Karperien, M. & Wit, J.M. Systemic and local regulation of the growth plate. Endocr. Rev. 24, 782–801 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Palmert, M.R. & Hirschhorn, J.N. Genetic approaches to stature, pubertal timing, and other complex traits. Mol. Genet. Metab. 80, 1–10 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Perola, M. et al. Combined genome scans for body stature in 6,602 European twins: evidence for common Caucasian loci. PLoS Genet. 3, e97 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  12. International HapMap Consortrium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  13. Filion, G.J. et al. A family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol. Cell. Biol. 26, 169–181 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kiefer, H. et al. ZENON, a novel POZ Kruppel-like DNA binding protein associated with differentiation and/or survival of late postmitotic neurons. Mol. Cell. Biol. 25, 1713–1729 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mi, H. et al. The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res. 33, D284–D288 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Kuno, K. et al. ADAMTS-1 cleaves a cartilage proteoglycan, aggrecan. FEBS Lett. 478, 241–245 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Milewicz, D.M. et al. A mutation in FBN1 disrupts profibrillin processing and results in isolated skeletal features of the Marfan syndrome. J. Clin. Invest. 95, 2373–2378 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sherry, S.T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim, K.S. et al. Investigation of obesity candidate genes on porcine fat deposition quantitative trait loci regions. Obes. Res. 12, 1981–1994 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Devlin, B., Bacanu, S.A. & Roeder, K. Genomic Control to the extreme. Nat. Genet. 36, 1129–1130 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Gulcher, J.R., Kristjansson, K., Gudbjartsson, H. & Stefansson, K. Protection of privacy by third-party encryption in genetic research in Iceland. Eur. J. Hum. Genet. 8, 739–742 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Barrett, J.C. & Cardon, L.R. Evaluating coverage of genome-wide association studies. Nat. Genet. 38, 659–662 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Kutyavin, I.V. et al. A novel endonuclease IV post-PCR genotyping system. Nucleic Acids Res. 34, e128 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pritchard, J.K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Sulem, P. et al. Genetic determinants of hair, eye and skin pigmentation in Europeans. Nat. Genet. 39, 1443–1452 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Elston, R.C. & Stewart, J. A general model for the genetic analysis of pedigree data. Hum. Hered. 21, 523–542 (1971).

    Article  CAS  PubMed  Google Scholar 

  28. Malecot, G. Les Mathématiques de l'Héredité (Masson, Paris, 1948).

    Google Scholar 

  29. Aulchenko, Y.S., de Koning, D.J. & Haley, C. Genomewide rapid association using mixed model and regression: a fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. Genetics 177, 577–585 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D.F.G., G.B.W., G.T., H.S., P.S. and K.S. wrote the first draft of the paper. G.B.W., S.T., E.J.O., G.H.O., T. Jonsson, L.T. and T.R. participated in the collection of Icelandic data. V.S., K.B.-J., T.H., G.A., T. Jorgensen and O.P. collected the Danish data. K.K.A., J.A.W., D.W.S., M.H., B.F., A.L.M.V. and L.A.K. collected the Dutch data. D.M.B., L.R.Y. and L.C.B. collected the US data. D.F.G., G.T., H.S., B.V.H., P.Z., P.S., A.G., S.S. and A.I. analyzed the data. G.B.W., A.H. and U.T. carried out the genotyping. D.F.G., J.G., A.K., U.T. and K.S. planned and supervised the work. All authors contributed to the final version of the paper.

Corresponding authors

Correspondence to Daniel F Gudbjartsson or Kari Stefansson.

Ethics declarations

Competing interests

The authors from Decode Genetics Inc. own stocks and stock options in the company.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–6, Supplementary Figure 1 (PDF 3948 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gudbjartsson, D., Walters, G., Thorleifsson, G. et al. Many sequence variants affecting diversity of adult human height. Nat Genet 40, 609–615 (2008). https://doi.org/10.1038/ng.122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.122

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing