Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia

Abstract

Primary ciliary dyskinesia most often arises from loss of the dynein motors that power ciliary beating. Here we show that DNAAF3 (also known as PF22), a previously uncharacterized protein, is essential for the preassembly of dyneins into complexes before their transport into cilia. We identified loss-of-function mutations in the human DNAAF3 gene in individuals from families with situs inversus and defects in the assembly of inner and outer dynein arms. Knockdown of dnaaf3 in zebrafish likewise disrupts dynein arm assembly and ciliary motility, causing primary ciliary dyskinesia phenotypes that include hydrocephalus and laterality malformations. Chlamydomonas reinhardtii PF22 is exclusively cytoplasmic, and a PF22-null mutant cannot assemble any outer and some inner dynein arms. Altered abundance of dynein subunits in mutant cytoplasm suggests that DNAAF3 (PF22) acts at a similar stage as other preassembly proteins, for example, DNAAF2 (also known as PF13 or KTU) and DNAAF1 (also known as ODA7 or LRRC50), in the dynein preassembly pathway. These results support the existence of a conserved, multistep pathway for the cytoplasmic formation of assembly competent ciliary dynein complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Chlamydomonas PF22 locus encodes a conserved cytoplasmic protein that is essential for axonemal dynein assembly.
Figure 2: Identification of DNAAF3 mutations in individuals with PCD with dynein assembly defects.
Figure 3: An absence of outer dynein arms in respiratory epithelial cell cilia from individuals with PCD carrying DNAAF3 mutations.
Figure 4: An absence of the inner row dynein subunit DNALI1 in respiratory epithelial cell cilia from individuals with PCD carrying DNAAF3 mutations.
Figure 5: Morpholino knockdown of dnaaf3 in zebrafish embryos results in axis curvature defects, kidney cysts, hydrocephalus, perturbed otolith development and laterality defects.
Figure 6: Altered ODA subunit abundance in the Chlamydomonas pf22 mutant cytoplasm.
Figure 7: The Chlamydomonas pf22 mutant does not correctly assemble outer dynein arms in the cytoplasm.
Figure 8: Hypothesized pathway of the cytoplasmic assembly of axonemal outer row dynein.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

NCBI Reference Sequence

References

  1. Coren, M.E., Meeks, M., Morrison, I., Buchdahl, R.M. & Bush, A. Primary ciliary dyskinesia: age at diagnosis and symptom history. Acta Paediatr. 91, 667–669 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Bush, A., Hogg, C., Mitchison, H.M., Nisbet, M. & Wilson, R. Update in primary ciliary dyskinesia. Clin. Pulm. Med. 16, 219–225 (2009).

    Article  Google Scholar 

  3. Bush, A. Congenital heart disease in primary ciliary dyskinesia. Pediatr. Cardiol. 19, 191 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Kennedy, M.P. et al. Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia. Circulation 115, 2814–2821 (2007).

    Article  PubMed  Google Scholar 

  5. Tan, S.Y. et al. Heterotaxy and complex structural heart defects in a mutant mouse model of primary ciliary dyskinesia. J. Clin. Invest. 117, 3742–3752 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Barbato, A. et al. Primary ciliary dyskinesia: a consensus statement on diagnostic and treatment approaches in children. Eur. Respir. J. 34, 1264–1276 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Ibañez-Tallon, I. et al. Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum. Mol. Genet. 13, 2133–2141 (2004).

    Article  PubMed  Google Scholar 

  8. Kosaki, K. et al. Absent inner dynein arms in a fetus with familial hydrocephalus-situs abnormality. Am. J. Med. Genet. A. 129A, 308–311 (2004).

    Article  PubMed  Google Scholar 

  9. Yang, P. et al. Radial spoke proteins of Chlamydomonas flagella. J. Cell Sci. 119, 1165–1174 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Castleman, V.H. et al. Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities. Am. J. Hum. Genet. 84, 197–209 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Heuser, T., Raytchev, M., Krell, J., Porter, M.E. & Nicastro, D. The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J. Cell Biol. 187, 921–933 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Papon, J.F. et al. A 20-year experience of electron microscopy in the diagnosis of primary ciliary dyskinesia. Eur. Respir. J. 35, 1057–1063 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. El Zein, L., Omran, H. & Bouvagnet, P. Lateralization defects and ciliary dyskinesia: lessons from algae. Trends Genet. 19, 162–167 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Olbrich, H. et al. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right and asymmetry. Nat. Genet. 30, 143–144 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Bartoloni, L. et al. Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc. Natl. Acad. Sci. USA 99, 10282–10286 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pennarun, G. et al. Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am. J. Hum. Genet. 65, 1508–1519 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Loges, N.T. et al. DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am. J. Hum. Genet. 83, 547–558 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mazor, M. et al. Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding dynein light chain 1. Am. J. Hum. Genet. 88, 599–607 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Duriez, B. et al. A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia. Proc. Natl. Acad. Sci. USA 104, 3336–3341 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Omran, H. et al. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 456, 611–616 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Duquesnoy, P. et al. Loss-of-function mutations in the human ortholog of Chlamydomonas reinhardtii ODA7 disrupt dynein arm assembly and cause primary ciliary dyskinesia. Am. J. Hum. Genet. 85, 890–896 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Loges, N.T. et al. Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects. Am. J. Hum. Genet. 85, 883–889 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kamiya, R. Mutations at twelve independent loci result in absence of outer dynein arms in Chylamydomonas reinhardtii. J. Cell Biol. 107, 2253–2258 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. Huang, B., Piperno, G. & Luck, D.J.L. Paralyzed flagella mutants of Chlamydomonas reinhardtii. J. Biol. Chem. 254, 3091–3099 (1979).

    CAS  PubMed  Google Scholar 

  25. Piperno, G., Mead, K. & Shestak, W. The inner dynein arms I2 interact with a “dynein regulatory complex” in Chlamydomonas flagella. J. Cell Biol. 118, 1455–1463 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Piperno, G. & Ramanis, Z. The proximal portion of Chlamydomonas flagella contains a distinct set of inner dynein arms. J. Cell Biol. 112, 701–709 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Mitchell, D.R. & Kang, Y. Identification of oda6 as a Chlamydomonas dynein mutant by rescue with the wild-type gene. J. Cell Biol. 113, 835–842 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Kamiya, R. Functional diversity of axonemal dyneins as studied in Chlamydomonas mutants. Int. Rev. Cytol. 219, 115–155 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Freshour, J., Yokoyama, R. & Mitchell, D.R. Chlamydomonas flagellar outer row dynein assembly protein ODA7 interacts with both outer row and I1 inner row dyneins. J. Biol. Chem. 282, 5404–5412 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Hom, E.F. et al. A unified taxonomy for ciliary dyneins. Cytoskeleton (Hoboken) 68, 555–565 (2011).

    Article  CAS  Google Scholar 

  31. Fowkes, M.E. & Mitchell, D.R. The role of preassembled cytoplasmic complexes in assembly of flagellar dynein subunits. Mol. Biol. Cell 9, 2337–2347 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ahmed, N.T., Gao, C., Lucker, B.F., Cole, D.G. & Mitchell, D.R. ODA16 aids axonemal outer row dynein assembly through an interaction with the intraflagellar transport machinery. J. Cell Biol. 183, 313–322 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yamamoto, R., Hirono, M. & Kamiya, R. Discrete PIH proteins function in the cytoplasmic preassembly of different subsets of axonemal dyneins. J. Cell Biol. 190, 65–71 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ahmed, N.T. & Mitchell, D.R. ODA16p, a Chlamydomonas flagellar protein needed for dynein assembly. Mol. Biol. Cell 16, 5004–5012 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Geremek, M. et al. Gene expression studies in cells from primary ciliary dyskinesia patients identify 208 potential ciliary genes. Hum. Genet. 129, 283–293 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Ross, A.J., Dailey, L.A., Brighton, L.E. & Devlin, R.B. Transcriptional profiling of mucociliary differentiation in human airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 37, 169–185 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Meeks, M. et al. A locus for primary ciliary dyskinesia maps to chromosome 19q. J. Med. Genet. 37, 241–244 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Adzhubei, I.A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kumar, P., Henikoff, S. & Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Fliegauf, M. et al. Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am. J. Respir. Crit. Care Med. 171, 1343–1349 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kramer-Zucker, A.G. et al. Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis. Development 132, 1907–1921 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. van Rooijen, E. et al. LRRC50, a conserved ciliary protein implicated in polycystic kidney disease. J. Am. Soc. Nephrol. 19, 1128–1138 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gao, C., Wang, G., Amack, J.D. & Mitchell, D.R. Oda16/Wdr69 is essential for axonemal dynein assembly and ciliary motility during zebrafish embryogenesis. Dev. Dyn. 239, 2190–2197 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lunt, S.C., Haynes, T. & Perkins, B.D. Zebrafish ift57, ift88, and ift172 intraflagellar transport mutants disrupt cilia but do not affect hedgehog signaling. Dev. Dyn. 238, 1744–1759 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Colantonio, J.R. et al. The dynein regulatory complex is required for ciliary motility and otolith biogenesis in the inner ear. Nature 457, 205–209 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Rosenbaum, J.L., Moulder, J.E. & Ringo, D.L. Flagellar elongation and shortening in Chlamydomonas. The use of cycloheximide and colchicine to study the synthesis and assembly of flagellar proteins. J. Cell Biol. 41, 600–619 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao, R. et al. Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120, 715–727 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Liu, L., Srikakulam, R. & Winkelmann, D.A. Unc45 activates Hsp90-dependent folding of the myosin motor domain. J. Biol. Chem. 283, 13185–13193 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wilkerson, C.G., King, S.M., Koutoulis, A., Pazour, G.J. & Witman, G.B. The 78,000 Mr intermediate chain of Chlamydomonas outer arm dynein is a WD-repeat protein required for arm assembly. J. Cell Biol. 129, 169–178 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Mitchell, D.R. & Brown, K.S. Sequence analysis of the Chlamydomonas α and β dynein heavy chain genes. J. Cell Sci. 107, 635–644 (1994).

    CAS  PubMed  Google Scholar 

  51. Takada, S. & Kamiya, R. Functional reconstitution of Chlamydomonas outer dynein arms from α-β and γ subunits: requirement of a third factor. J. Cell Biol. 126, 737–745 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Fowkes, M.E. The Role of a 70 kDa Intermediate Chain in Flagellar Outer Row Dynein Assembly. Thesis, State University of New York Health Science Center (1999).

  53. Boulon, S. et al. HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. Mol. Cell 39, 912–924 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Horejsí, Z. et al. CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability. Mol. Cell 39, 839–850 (2010).

    Article  PubMed  Google Scholar 

  55. Sullivan-Brown, J. et al. Zebrafish mutations affecting cilia motility share similar cystic phenotypes and suggest a mechanism of cyst formation that differs from pkd2 morphants. Dev. Biol. 314, 261–275 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Rymarquis, L.A., Handley, J.M., Thomas, M. & Stern, D.B. Beyond complementation. Map-based cloning in Chlamydomonas reinhardtii. Plant Physiol. 137, 557–566 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gouy, M., Guindon, S. & Gascuel, O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Mitchell, D.R. & Rosenbaum, J.L. Protein-protein interactions in the 18S ATPase of Chlamydomonas outer dynein arms. Cell Motil. Cytoskeleton 6, 510–520 (1986).

    Article  CAS  PubMed  Google Scholar 

  61. King, S.M., Otter, T. & Witman, G.B. Characterization of monoclonal antibodies against Chlamydomonas flagellar dyneins by high-resolution protein blotting. Proc. Natl. Acad. Sci. USA 82, 4717–4721 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang, P. & Sale, W.S. The Mr 140,000 intermediate chain of Chlamydomonas flagellar inner arm dynein is a WD-repeat protein implicated in dynein arm anchoring. Mol. Biol. Cell 9, 3335–3349 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yagi, T., Uematsu, K., Liu, Z. & Kamiya, R. Identification of dyneins that localize exclusively to the proximal portion of Chlamydomonas flagella. J. Cell Sci. 122, 1306–1314 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Rashid, S. et al. The murine Dnali1 gene encodes a flagellar protein that interacts with the cytoplasmic dynein heavy chain 1. Mol. Reprod. Dev. 73, 784–794 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Ferrante, M.I. et al. Convergent extension movements and ciliary function are mediated by ofd1, a zebrafish orthologue of the human oral-facial-digital type 1 syndrome gene. Hum. Mol. Genet. 18, 289–303 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Barth, K.A. & Wilson, S.W. Expression of zebrafish nkx2.2 is influenced by sonic hedgehog/vertebrate hedgehog-1 and demarcates a zone of neuronal differentiation in the embryonic forebrain. Development 121, 1755–1768 (1995).

    CAS  PubMed  Google Scholar 

  67. Yelon, D., Horne, S.A. & Stainier, D.Y. Restricted expression of cardiac myosin genes reveals regulated aspects of heart tube assembly in zebrafish. Dev. Biol. 214, 23–37 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the patients and their families for their participation and the physicians involved, particularly H. Simpson, J. Clarke and D. Spencer. We are grateful to M. Turmaine (University College London) for zebrafish electron microscopy. W. Sale (Emory University) and S. King (University of Connecticut) provided antibodies to Chlamydomonas dynein subunits. We thank R.M. Gardiner, S. Spiden, M. Meeks, D. Antony and D. Osborn for advice and assistance. We also thank A. Heer, D. Nergenau, C. Reinhard, C. Kopp, K. Sutter, C. Tessmer, T. de Ledezma and S. Franz for excellent technical assistance. The work conducted by the US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy under contract number DE-AC02-05CH11231. D.R.M. was supported by US National Institutes of Health grant R01-GM044228. H.M.M. received support from the PCD Family Support Group (UK) and funding from the Fondation Milena Carvajal Pro-Kartagener, the Medical Research Council UK, the Wellcome Trust and Action Medical Research. H. Omran was supported by grants from the Deutsche Forschungsgemeinschaft (DFG) (Om 6/4, GRK1104, BIOSS and SFB592).

Author information

Authors and Affiliations

Authors

Contributions

H.M.M., A.D., H.B., N.T.L., M.A.D., H. Olbrich, H.M., E.M.K.C. and H. Omran performed the studies on human samples. D.R.M. designed the Chlamydomonas studies, and D.R.M. and J.F. performed the experiments. T.Y. contributed essential reagents and data analysis. H.M.M. designed the zebrafish studies, and H.M.M., M.S., A.D., R.A.H., C.O. and P.L.B. performed the experiments. D.R.M. and H.M.M. wrote the manuscript.

Corresponding authors

Correspondence to Hannah M Mitchison or David R Mitchell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3, Supplementary Figures 1–6 and Supplementary Videos 1–7. (PDF 842 kb)

Supplementary Video 1

Wild type Chlamydomonas cells swimming under darkfield illumination. Most cells swim progressively. Occasional stationary cells have adhered to the glass surface through flagellar contact. Images were captured and displayed at 30 fps. (MOV 3300 kb)

Supplementary Video 2

Mutant Chlamydomonas strain pf22 cells fail to swim. Most cells are non-adherent but remain stationary due to lack of flagellar motility. Images were captured and displayed at 30 fps. (MOV 3124 kb)

Supplementary Video 3

Wild type swimming of the Chlamydomonas pf22 strain expressing a Myc-tagged PF22 protein. Most cells have full length flagella and swim progressively with a swimming pattern and velocity similar to wild type. Occasional stationary cells are adhering to the glass surface by their flagella. Images were captured and displayed at 30 fps. (MOV 2959 kb)

Supplementary Video 4

Olfactory placode cilia in dnaaf3MOex8 zebrafish embryo. (MOV 2189 kb)

Supplementary Video 5

Olfactory placode cilia in wildtype zebrafish embryo. (MOV 2402 kb)

Supplementary Video 6

Spinal cord canal cilia in dnaaf3MOex8 zebrafish embryo. (MOV 2404 kb)

Supplementary Video 7

Spinal cord canal cilia in wildtype zebrafish embryo. (MOV 2787 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchison, H., Schmidts, M., Loges, N. et al. Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia. Nat Genet 44, 381–389 (2012). https://doi.org/10.1038/ng.1106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.1106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing