Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome

This article has been updated

Abstract

Brain malformations are individually rare but collectively common causes of developmental disabilities1,2,3. Many forms of malformation occur sporadically and are associated with reduced reproductive fitness, pointing to a causative role for de novo mutations4,5. Here, we report a study of Baraitser-Winter syndrome, a well-defined disorder characterized by distinct craniofacial features, ocular colobomata and neuronal migration defect6,7. Using whole-exome sequencing of three proband-parent trios, we identified de novo missense changes in the cytoplasmic actin–encoding genes ACTB and ACTG1 in one and two probands, respectively. Sequencing of both genes in 15 additional affected individuals identified disease-causing mutations in all probands, including two recurrent de novo alterations (ACTB, encoding p.Arg196His, and ACTG1, encoding p.Ser155Phe). Our results confirm that trio-based exome sequencing is a powerful approach to discover genes causing sporadic developmental disorders, emphasize the overlapping roles of cytoplasmic actin proteins in development and suggest that Baraitser-Winter syndrome is the predominant phenotype associated with mutation of these two genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Craniofacial appearance and magnetic resonance imaging (MRI) of an individual with Baraitser-Winter syndrome.
Figure 2: Protein blot analysis of β- and γ-actin isoforms in lymphoblastoid cells derived from an unaffected control (09.1359) and two individuals with deletion or duplication of ACTB or ACTG1 carrying the recurrent mutations in ACTB encoding p.Arg196His (LR04-173) and in ACTG1 encoding p.Ser155Phe (LP98-096).
Figure 3: Cytoskeletal organization, morphology and F-actin stability in lymphoblastoid cells derived from an unaffected control (09.1359) and two individuals with Baraitser-Winter syndrome (LR04-173 and LP98-096).

Similar content being viewed by others

Change history

  • 04 March 2012

    In the version of this article initially published online, the proband from trio 1 was incorrectly identified as LP98-083 in the second paragraph of the main text. The correct identification number for this subject is LP92-083. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Glinianaia, S.V., Rankin, J. & Colver, A. Cerebral palsy rates by birth weight, gestation and severity in North of England, 1991–2000 singleton births. Arch. Dis. Child. 96, 180–185 (2011).

    Article  PubMed  Google Scholar 

  2. Rankin, J. et al. Congenital anomalies in children with cerebral palsy: a population-based record linkage study. Dev. Med. Child Neurol. 52, 345–351 (2010).

    Article  PubMed  Google Scholar 

  3. von Wendt, L. & Rantakallio, P. Congenital malformations of the central nervous system in a 1-year birth cohort followed to the age of 14 years. Childs Nerv. Syst. 2, 80–82 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Vissers, L.E. et al. A de novo paradigm for mental retardation. Nat. Genet. 42, 1109–1112 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Cooper, G.M. et al. A copy number variation morbidity map of developmental delay. Nat. Genet. 43, 838–846 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baraitser, M. & Winter, R.M. Iris coloboma, ptosis, hypertelorism, and mental retardation: a new syndrome. J. Med. Genet. 25, 41–43 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ramer, J.C. et al. Previously apparently undescribed syndrome: shallow orbits, ptosis, coloboma, trigonocephaly, gyral malformations, and mental and growth retardation. Am. J. Med. Genet. 57, 403–409 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Hoischen, A. et al. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat. Genet. 42, 483–485 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Hoischen, A. et al. De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome. Nat. Genet. 43, 729–731 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Ng, S.B. et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet. 42, 790–793 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Conrad, D.F. et al. Variation in genome-wide mutation rates within and between human families. Nat. Genet. 43, 712–714 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lynch, M. Rate, molecular spectrum, and consequences of human mutation. Proc. Natl. Acad. Sci. USA 107, 961–968 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. O'Roak, B.J. et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat. Genet. 43, 585–589 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Girard, S.L. et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat. Genet. 43, 860–863 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Xu, B. et al. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat. Genet. 43, 864–868 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fryns, J.P. & Aftimos, S. New MR/MCA syndrome with distinct facial appearance and general habitus, broad and webbed neck, hypoplastic inverted nipples, epilepsy, and pachygyria of the frontal lobes. J. Med. Genet. 37, 460–462 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rossi, M., Guerrini, R., Dobyns, W.B., Andria, G. & Winter, R.M. Characterization of brain malformations in the Baraitser-Winter syndrome and review of the literature. Neuropediatrics 34, 287–292 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Verloes, A. Iris coloboma, ptosis, hypertelorism, and mental retardation: Baraitser-Winter syndrome or Noonan syndrome? J. Med. Genet. 30, 425–426 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  20. Scarano, E., Iaccarino, M., Grippo, P. & Parisi, E. The heterogeneity of thymine methyl group origin in DNA pyrimidine isostichs of developing sea urchin embryos. Proc. Natl. Acad. Sci. USA 57, 1394–1400 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Buetow, K.H., Edmonson, M.N. & Cassidy, A.B. Reliable identification of large numbers of candidate SNPs from public EST data. Nat. Genet. 21, 323–325 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Gupton, S.L. & Gertler, F.B. Filopodia: the fingers that do the walking. Sci. STKE 2007, re5 (2007).

    Article  PubMed  Google Scholar 

  23. Harborth, J., Elbashir, S.M., Bechert, K., Tuschl, T. & Weber, K. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J. Cell Sci. 114, 4557–4565 (2001).

    CAS  PubMed  Google Scholar 

  24. Lambrechts, A., Van Troys, M. & Ampe, C. The actin cytoskeleton in normal and pathological cell motility. Int. J. Biochem. Cell Biol. 36, 1890–1909 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Shawlot, W., Deng, J.M., Fohn, L.E. & Behringer, R.R. Restricted β-galactosidase expression of a hygromycin-lacZ gene targeted to the β-actin locus and embryonic lethality of β-actin mutant mice. Transgenic Res. 7, 95–103 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Vandekerckhove, J. & Weber, K. At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J. Mol. Biol. 126, 783–802 (1978).

    Article  CAS  PubMed  Google Scholar 

  27. Garrels, J.I. & Gibson, W. Identification and characterization of multiple forms of actin. Cell 9, 793–805 (1976).

    Article  CAS  PubMed  Google Scholar 

  28. Yao, J., Sasaki, Y., Wen, Z., Bassell, G.J. & Zheng, J.Q. An essential role for β-actin mRNA localization and translation in Ca2+-dependent growth cone guidance. Nat. Neurosci. 9, 1265–1273 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Dugina, V., Zwaenepoel, I., Gabbiani, G., Clement, S. & Chaponnier, C. β and γ-cytoplasmic actins display distinct distribution and functional diversity. J. Cell Sci. 122, 2980–2988 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Höfer, D., Ness, W. & Drenckhahn, D. Sorting of actin isoforms in chicken auditory hair cells. J. Cell Sci. 110, 765–770 (1997).

    PubMed  Google Scholar 

  31. Belyantseva, I.A. et al. Gamma-actin is required for cytoskeletal maintenance but not development. Proc. Natl. Acad. Sci. USA 106, 9703–9708 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bunnell, T.M. & Ervasti, J.M. Delayed embryonic development and impaired cell growth and survival in Actg1 null mice. Cytoskeleton (Hoboken) 67, 564–572 (2010).

    Article  CAS  Google Scholar 

  33. Nunoi, H. et al. A heterozygous mutation of β-actin associated with neutrophil dysfunction and recurrent infection. Proc. Natl. Acad. Sci. USA 96, 8693–8698 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Procaccio, V. et al. A mutation of β-actin that alters depolymerization dynamics is associated with autosomal dominant developmental malformations, deafness, and dystonia. Am. J. Hum. Genet. 78, 947–960 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhu, M. et al. Mutations in the γ-actin gene (ACTG1) are associated with dominant progressive deafness (DFNA20/26). Am. J. Hum. Genet. 73, 1082–1091 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yarmola, E.G., Somasundaram, T., Boring, T.A., Spector, I. & Bubb, M.R. Actin-latrunculin A structure and function. Differential modulation of actin-binding protein function by latrunculin A. J. Biol. Chem. 275, 28120–28127 (2000).

    CAS  PubMed  Google Scholar 

  37. Tartaglia, M. & Gelb, B.D. Noonan syndrome and related disorders: genetics and pathogenesis. Annu. Rev. Genomics Hum. Genet. 6, 45–68 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Ibrahimi, O.A., Zhang, F., Eliseenkova, A.V., Linhardt, R.J. & Mohammadi, M. Proline to arginine mutations in FGF receptors 1 and 3 result in Pfeiffer and Muenke craniosynostosis syndromes through enhancement of FGF binding affinity. Hum. Mol. Genet. 13, 69–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Lindhurst, M.J. et al. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N. Engl. J. Med. 365, 611–619 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kholmanskikh, S.S., Dobrin, J.S., Wynshaw-Boris, A., Letourneau, P.C. & Ross, M.E. Disregulated RhoGTPases and actin cytoskeleton contribute to the migration defect in Lis1-deficient neurons. J. Neurosci. 23, 8673–8681 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kholmanskikh, S.S. et al. Calcium-dependent interaction of Lis1 with IQGAP1 and Cdc42 promotes neuronal motility. Nat. Neurosci. 9, 50–57 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. DePristo, M.A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cooper, G.M. et al. Single-nucleotide evolutionary constraint scores highlight disease-causing mutations. Nat. Methods 7, 250–251 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Grantham, R. Amino acid difference formula to help explain protein evolution. Science 185, 862–864 (1974).

    Article  CAS  PubMed  Google Scholar 

  47. Robinson, J.T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gilissen, C. et al. Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. Am. J. Hum. Genet. 87, 418–423 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wang, K. et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 17, 1665–1674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the families for their contribution to this study. We thank all members of the Northwest Genomics Center and Genomic Disorders Group Nijmegen, as well as personnel from the Microarray Facility and Sequencing Facility Nijmegen, for excellent technical assistance. This work was supported by grants from the US National Institutes of Health (NS058721 to W.B.D. and NS048120 to M.E.R.), the Netherlands Organization for Health Research and Development (ZonMW; 917-66-363 and 911-08-025 to J.A.V.), the European Union (EU)-funded TECHGENE project (Health-F5-2009-223143 to J.A.V.) and the AnEUploidy project (LSHG-CT-2006-37627 to A.H., B.W.M.v.B., H.G.B. and J.A.V.). J.-B.R. is supported by a Banting Postdoctoral Fellowship from the Canadian Institutes of Health Research. T.R. is supported by an Australian National Health and Medical Research Council (NHMRC) postdoctoral fellowship. We thank the Simons Foundation Autism Research Initiative (SFARI) that provided control exome data (191889), the National Institute of Environmental Health Services (NIEHS) Environmental Genome Project for providing support for this project (HHSN273200800010C) and the NHLBI GO Exome Sequencing Project and its ongoing studies that produced and provided exome variant calls for comparison, including the Lung GO Sequencing Project (HL-102923), the Women's Health Initiative (WHI) Sequencing Project (HL-102924), the Broad GO Sequencing Project (HL-102925), the Seattle GO Sequencing Project (HL-102926) and the Heart GO Sequencing Project (HL-103010).

Author information

Authors and Affiliations

Authors

Contributions

D.T.P., W.B.D., A.V. and H.G.B. designed the study. J.-B.R., B.W.M.v.B. and A.H. designed and performed the genetics experiments. S.S.K. performed the experiments in lymphoblastoid cell lines. J.-B.R., A.H., B.J.O. and C.G. performed the bioinformatics experiments. B.J.O. analyzed the control exome data sets. S.G. contributed to the genetics experiments. C.T.S. and S.L.C. prepared DNA samples and lymphoblastoid cell lines. O.A.A.-R., J.F.A., N.C., V.D.-G., A.E.F., J.-P.F., K.W.G., M.K., T.K., G.M.S.M., M.J.M.N., C.M.A.v.R.-A., T.R., B.B.A.d.V., M.M., V.M.S., A.V., H.G.B., D.T.P. and W.B.D. recruited and evaluated the study subjects. J.A.R. analyzed the Signature Genomic Laboratories data set. J.S. supervised B.J.O., J.A.V. supervised A.H., C.G. and S.G., H.G.B. supervised B.W.M.v.B., M.E.R. supervised and evaluated data with S.S.K. and wrote sections related to lymphoblastoid cell lines, and W.B.D. supervised J.-B.R. J.-B.R. and W.B.D. wrote the manuscript.

Corresponding authors

Correspondence to Daniela T Pilz or William B Dobyns.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Figures 1–5 and Supplementary Tables 1–6 (PDF 640 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivière, JB., van Bon, B., Hoischen, A. et al. De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome. Nat Genet 44, 440–444 (2012). https://doi.org/10.1038/ng.1091

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.1091

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing