Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy

Abstract

We performed a two-stage genome-wide association study of IgA nephropathy (IgAN) in Han Chinese, with 1,434 affected individuals (cases) and 4,270 controls in the discovery phase and follow-up of the top 61 SNPs in an additional 2,703 cases and 3,464 controls. We identified associations at 17p13 (rs3803800, P = 9.40 × 10−11, OR = 1.21; rs4227, P = 4.31 × 10−10, OR = 1.23) and 8p23 (rs2738048, P = 3.18 × 10−14, OR = 0.79) that implicated the genes encoding tumor necrosis factor (TNFSF13) and α-defensin (DEFA) as susceptibility genes. In addition, we found multiple associations in the major histocompatibility complex (MHC) region (rs660895, P = 4.13 × 10−20, OR = 1.34; rs1794275, P = 3.43 × 10−13, OR = 1.30; rs2523946, P = 1.74 × 10−11, OR = 1.21) and confirmed a previously reported association at 22q12 (rs12537, P = 1.17 × 10−11, OR = 0.78). We also found that rs660895 was associated with clinical subtypes of IgAN (P = 0.003), proteinuria (P = 0.025) and IgA levels (P = 0.047). Our findings show that IgAN is associated with variants near genes involved in innate immunity and inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Manhattan plots of the P values of association obtained by analysis of the 444,882 polymorphic SNPs in the discovery sample of 1,434 IgAN cases and 4,270 controls.
Figure 2: Regional plots of the association results from the discovery sample and recombination rates within the two new susceptibility loci.

Similar content being viewed by others

References

  1. D'Amico, G. The commonest glomerulonephritis in the world: IgA nephropathy. Q. J. Med. 64, 709–727 (1987).

    CAS  PubMed  Google Scholar 

  2. Barratt, J. & Feehally, J. IgA nephropathy. J. Am. Soc. Nephrol. 16, 2088–2097 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Donadio, J.V. & Grande, J.P. IgA nephropathy. N. Engl. J. Med. 347, 738–748 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Levy, M. & Berger, J. Worldwide perspective of IgA nephropathy. Am. J. Kidney Dis. 12, 340–347 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Tsukamoto, Y. et al. Report of the Asian Forum of Chronic Kidney Disease Initiative (AFCKDI) 2007. “Current status and perspective of CKD in Asia”: diversity and specificity among Asian countries. Clin. Exp. Nephrol. 13, 249–256 (2009).

    Article  PubMed  Google Scholar 

  6. Hsu, S.I., Ramirez, S.B., Winn, M.P., Bonventre, J.V. & Owen, W.F. Evidence for genetic factors in the development and progression of IgA nephropathy. Kidney Int. 57, 1818–1835 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Hsu, S.I. Racial and genetic factors in IgA nephropathy. Semin. Nephrol. 28, 48–57 (2008).

    Article  PubMed  Google Scholar 

  8. Beerman, I., Novak, J., Wyatt, R.J., Julian, B.A. & Gharavi, A.G. The genetics of IgA nephropathy. Nat. Clin. Pract. Nephrol. 3, 325–338 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Izzi, C. et al. Familial aggregation of primary glomerulonephritis in an Italian population isolate: Valtrompia study. Kidney Int. 69, 1033–1040 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Scolari, F. Inherited forms of IgA nephropathy. J. Nephrol. 16, 317–320 (2003).

    CAS  PubMed  Google Scholar 

  11. Kiryluk, K. et al. Genetic studies of IgA nephropathy: past, present, and future. Pediatr. Nephrol. 25, 2257–2268 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bisceglia, L. et al. Genetic heterogeneity in Italian families with IgA nephropathy: suggestive linkage for two novel IgA nephropathy loci. Am. J. Hum. Genet. 79, 1130–1134 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gharavi, A.G. et al. IgA nephropathy, the most common cause of glomerulonephritis, is linked to 6q22–23. Nat. Genet. 26, 354–357 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Paterson, A.D. et al. Genome-wide linkage scan of a large family with IgA nephropathy localizes a novel susceptibility locus to chromosome 2q36. J. Am. Soc. Nephrol. 18, 2408–2415 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Cao, H.X. et al. Human leukocyte antigen DRB1 alleles predict risk and disease progression of immunoglobulin A nephropathy in Han Chinese. Am. J. Nephrol. 28, 684–691 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fennessy, M. et al. HLA-DQ gene polymorphism in primary IgA nephropathy in three European populations. Kidney Int. 49, 477–480 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Raguénès, O., Mercier, B., Cledes, J., Whebe, B. & Ferec, C. HLA class II typing and idiopathic IgA nephropathy (IgAN): DQB1*0301, a possible marker of unfavorable outcome. Tissue Antigens 45, 246–249 (1995).

    Article  PubMed  Google Scholar 

  18. Yu, H.H. et al. Genetics and immunopathogenesis of IgA nephropathy. Clin. Rev. Allergy Immunol. 41, 198–213 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Gharavi, A.G. et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat. Genet. 43, 321–327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alexopoulos, E., Apostolos, K. & Papadimitriou, M. Increased glomerular and interstitial LFA-1 expression in proteinuric immunoglobulin A nephropathy. Am. J. Kidney Dis. 27, 327–333 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Gupta, S.K. et al. Proteinuria, creatinine clearance, and immune activation in antiretroviral-naive HIV-infected subjects. J. Infect. Dis. 200, 614–618 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3, 710–720 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Rehaume, L.M. & Hancock, R.E. Neutrophil-derived defensins as modulators of innate immune function. Crit. Rev. Immunol. 28, 185–200 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Yokoyama, H. et al. Urinary levels of chemokines (MCAF/MCP-1, IL-8) reflect distinct disease activities and phases of human IgA nephropathy. J. Leukoc. Biol. 63, 493–499 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Stangou, M. et al. Urinary levels of epidermal growth factor, interleukin-6 and monocyte chemoattractant protein-1 may act as predictor markers of renal function outcome in immunoglobulin A nephropathy. Nephrology (Carlton) 14, 613–620 (2009).

    Article  CAS  Google Scholar 

  26. Saraheimo, M. et al. Increased levels of alpha-defensin (-1, -2 and -3) in type 1 diabetic patients with nephropathy. Nephrol. Dial. Transplant. 23, 914–918 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Vordenbäumen, S. et al. Elevated levels of human beta-defensin 2 and human neutrophil peptides in systemic lupus erythematosus. Lupus 19, 1648–1653 (2010).

    Article  PubMed  Google Scholar 

  28. Stein, J.V. et al. APRIL modulates B and T cell immunity. J. Clin. Invest. 109, 1587–1598 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Castigli, E. et al. Impaired IgA class switching in APRIL-deficient mice. Proc. Natl. Acad. Sci. USA 101, 3903–3908 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. He, B. et al. Intestinal bacteria trigger T cell-independent immunoglobulin A2 class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 26, 812–826 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Neusser, M.A. et al. Intrarenal production of B-cell survival factors in human lupus nephritis. Mod. Pathol. 24, 98–107 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Ramanujam, M. et al. Similarities and differences between selective and nonselective BAFF blockade in murine SLE. J. Clin. Invest. 116, 724–734 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maruhashi, Y. et al. Analysis of macrophages in urine sediments in children with IgA nephropathy. Clin. Nephrol. 62, 336–343 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Hei, A.L. et al. Analysis of high-resolution HLA-A, -B, -Cw, -DRB1, and -DQB1 alleles and haplotypes in 718 Chinese marrow donors based on donor-recipient confirmatory typings. Int. J. Immunogenet. 36, 275–282 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Trachtenberg, E. et al. HLA class I (A, B, C) and class II (DRB1, DQA1, DQB1, DPB1) alleles and haplotypes in the Han from southern China. Tissue Antigens 70, 455–463 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Kawabata, Y. et al. Differential association of HLA with three subtypes of type 1 diabetes: fulminant, slowly progressive and acute-onset. Diabetologia 52, 2513–2521 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Tsuchiya, N., Kobayashi, S., Hashimoto, H., Ozaki, S. & Tokunaga, K. Association of HLA-DRB1*0901–DQB1*0303 haplotype with microscopic polyangiitis in Japanese. Genes Immun. 7, 81–84 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Geetha, D. & Seo, P. Renal transplantation in the ANCA-associated vasculitides. Am. J. Transplant. 7, 2657–2662 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Berthoux, F.C. et al. HLA-Bw35 and mesangial IgA glomerulonephritis. N. Engl. J. Med. 298, 1034–1035 (1978).

    CAS  PubMed  Google Scholar 

  40. Berthoux, F.C., Alamartine, E., Pommier, G. & Lepetit, J.C. HLA and IgA nephritis revisited 10 years later: HLA-B35 antigen as a prognostic factor. N. Engl. J. Med. 319, 1609–1610 (1988).

    CAS  PubMed  Google Scholar 

  41. Chen, J., Niaudet, P. & Levy, M. Schonlein-Henoch purpura and IgA nephropathy. in Renal Pathology (eds. C. Tisher & B. Brenner) 507–508 (Lippincott, Philadelphia, 1994).

  42. Niaudet, P. & Levy, M. Schonlein-Henoch purpura and IgA nephropathy. in Renal Pathology (Tisher, C. & Brenner, B., eds.) 507–508 (Lippincott, Philadelphia, 1994).

  43. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Steinhaus, H. Sur la division des corps matériels en parties. Bull. Acad. Polon. Sci. (in French) 4, 801–804 (1957).

    Google Scholar 

  46. Barrett, J.C., Fry, B., Maller, J. & Daly, M.J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (Vienna, 2008).

  48. Browning, S.R. & Browning, B.L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. de Bakker, P.I. et al. A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat. Genet. 38, 1166–1172 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pereyra, F. et al. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Science 330, 1551–1557 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Howie, B.N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39, 906–913 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).

  54. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

Download references

Acknowledgements

We are grateful to all the subjects and healthy volunteers who participated in this work. We thank the staff in The First Affiliated Hospital of Sun Yat-sen University for help with sample collection, DNA extraction and sample storage; W.Y. Meah, X. Chen, H.B. Toh, C.H. Wong, P.L. Ng and I.D. Irwan for performing the genotyping; Z.X. Zhang and Z. B. Hu for providing the control samples in the validation study and R. Johnson for reviewing the manuscript and providing constructive suggestions. This work was funded by the Major State Basic Research Development Program of China (973 program) (2012CB517700-2012CB517706), Key Program of National Natural Science Foundation of China (81130012), National Natural Science Foundation of China for Distinguished Young Scholars (30925019) and the Agency for Science & Technology and Research of Singapore (A*STAR) (to J.-J.L.).

Author information

Authors and Affiliations

Authors

Contributions

H.Z., Z.-H.L., M.L., X.W., J.-Q.W., J.C., R.-S.L., J.-X.W., Z.-S.L., L.Z., T.-Q.L. and X.-J.H. performed clinical characterization and recruitment of subjects and contributed samples; X.W., X.-Q.T., Z.-J.L., L.F. and W.W. prepared DNA; M.L. and X.-Y.Y. performed experiments. J.-J.L., H.-Q.L., K.-S.S. and M.L. analyzed data; Y.L., J.-N.F. and L.-D.S. contributed to analytical support and discussion; X.-Q.Y. and X.-J.Z. provided the platform and organized the study; J.-J.L., X.-Q.Y. and M.L. prepared the manuscript; J.-J.L. and X.-Q.Y. conceived and supervised the project.

Corresponding authors

Correspondence to Xue-Qing Yu or Jian-Jun Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–13 and Supplementary Figures 1–6 (PDF 1638 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, XQ., Li, M., Zhang, H. et al. A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy. Nat Genet 44, 178–182 (2012). https://doi.org/10.1038/ng.1047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.1047

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing