Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An anatomically comprehensive atlas of the adult human brain transcriptome

Abstract

Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of 900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography—the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Data generation and analysis pipeline.
Figure 2: Topography of transcript distributions for dopamine-signalling- and postsynaptic-density-associated genes.
Figure 3: Global gene networks.
Figure 4: Structural variation in gene expression.
Figure 5: Distinct transcriptional profiles of hippocampal subfields and human-specific pattern of CALB1 expression.
Figure 6: The neocortical transcriptome reflects primary sensorimotor specialization and in vivo spatial topography.

Similar content being viewed by others

References

  1. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007)

    Article  CAS  ADS  Google Scholar 

  2. Diez-Roux, G. et al. A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol. 9, e1000582 (2011)

    Article  CAS  Google Scholar 

  3. Baldock, R. A. et al. EMAP and EMAGE: a framework for understanding spatially organized data. Neuroinformatics 1, 309–325 (2003)

    Article  Google Scholar 

  4. Kang, H. J. et al. Spatio-temporal transcriptome of the human brain. Nature 478, 483–489 (2011)

    Article  CAS  ADS  Google Scholar 

  5. Colantuoni, C. et al. Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 478, 519–523 (2011)

    Article  CAS  ADS  Google Scholar 

  6. Markou, A., Chiamulera, C., Geyer, M. A., Tricklebank, M. & Steckler, T. Removing obstacles in neuroscience drug discovery: the future path for animal models. Neuropsychopharmacology 34, 74–89 (2009)

    Article  CAS  Google Scholar 

  7. Evans, A. C. et al. Anatomical mapping of functional activation in stereotactic coordinate space. Neuroimage 1, 43–53 (1992)

    Article  CAS  Google Scholar 

  8. Zeng, H. et al. Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell 149, 483–496 (2012)

    Article  CAS  Google Scholar 

  9. Bentivoglio, M. & Morelli, M. in Handbook of Chemical Neuroanatomy. Dopamine (eds Dunnett, S. B., Bentivoglio, M., Bjorklund, A. & Hokfelt, T. ) Ch. I 1–107 (Elsevier, 2005)

    Google Scholar 

  10. Hurd, Y. L. & Hall, H. in Handbook of Chemical Neuroanatomy. (Dopamine) (eds Dunnett, S.B., Bentivoglio, M., Bjorklund, A., & Hokfelt, T. ) Ch. IX 525–571 (Elsevier, 2005)

    Google Scholar 

  11. Johnson, M. B. et al. Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron 62 494–509 S0896–6273(09)00286–4 (2009)

    Article  CAS  Google Scholar 

  12. Bayes, A. et al. Characterization of the proteome, diseases and evolution of the human postsynaptic density. Nature Neurosci. 14, 19–21 (2011)

    Article  CAS  Google Scholar 

  13. Huang da, W. Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 4, 44–57 (2009)

  14. Hof, P. R., Nimchinsky, E. A. & Morrison, J. H. Neurochemical phenotype of corticocortical connections in the macaque monkey: quantitative analysis of a subset of neurofilament protein-immunoreactive projection neurons in frontal, parietal, temporal, and cingulate cortices. J. Comp. Neurol. 362, 109–133 (1995)

    Article  CAS  Google Scholar 

  15. Bergles, D. E., Roberts, J. D., Somogyi, P. & Jahr, C. E. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405, 187–191 (2000)

    Article  CAS  ADS  Google Scholar 

  16. Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, (2005)

  17. Horvath, S. et al. Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc. Natl Acad. Sci. USA 103, 17402–17407 (2006)

    Article  CAS  ADS  Google Scholar 

  18. Oldham, M. C. et al. Functional organization of the transcriptome in human brain. Nature Neurosci. 11, 1271–1282 (2008)

    Article  CAS  Google Scholar 

  19. Miller, J. A., Horvath, S. & Geschwind, D. H. Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc. Natl Acad. Sci. USA 107, 12698–12703 (2010)

    Article  CAS  ADS  Google Scholar 

  20. Langfelder, P., Luo, R., Oldham, M. C. & Horvath, S. Is my network module preserved and reproducible? PLoS Comput. Biol. 7, e1001057 (2011)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  21. Harrow, J. et al. GENCODE: producing a reference annotation for ENCODE. Genome Biol. 7, (suppl. 1)1–9 (2006)

    Article  Google Scholar 

  22. Amaral, D. G. & Insausti, R. in The Human Nervous System (ed. Paxinos, G. ) 771–755 (Academic, 1990)

    Google Scholar 

  23. Bernard, A. et al. Transcriptional architecture of the primate neocortex. Neuron 73, 1083–1099 (2012)

    Article  CAS  Google Scholar 

  24. Hawrylycz, M. et al. Digital atlasing and standardization in the mouse brain. PLoS Comput. Biol. 7, e1001065 (2011)

    Article  CAS  Google Scholar 

  25. Shattuck, D. W. et al. Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage 39, 1064–1080 (2008)

    Article  Google Scholar 

  26. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5, 621–628 (2008)

    Article  CAS  Google Scholar 

  27. Ameur, A. et al. Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain. Nature Struct. Mol. Biol. 18, 1435–1440 (2011)

    Article  CAS  Google Scholar 

  28. DeFelipe, J. & Jones, E. G. Cajal on the Cerebral Cortex: an Annotated Translation of the Complete Writings (Oxford Univ. Press, 1988)

    Google Scholar 

  29. Zilles, K. et al. Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry. Eur. Neuropsychopharmacol. 12, 587–599 (2002)

    Article  CAS  Google Scholar 

  30. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991)

    Article  CAS  Google Scholar 

  31. Belgard, T. G. et al. A transcriptomic atlas of mouse neocortical layers. Neuron 71, 605–616 (2011)

    Article  CAS  Google Scholar 

  32. Voineagu, I. et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474, 380–384 (2011)

    Article  CAS  Google Scholar 

  33. Herculano-Houzel, S. The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3, 31 (2009)

    Article  Google Scholar 

  34. Douglas, R. J. & Martin, K. A. Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451 (2004)

    Article  CAS  Google Scholar 

  35. Hosack, D. A., Dennis, G., Jr, Sherman, B. T., Lane, H. C. & Lempicki, R. A. Identifying biological themes within lists of genes with EASE. Genome Biol. 4, R70 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank the Allen Institute founders, P. G. Allen and J. Allen, for their vision, encouragement, and support. We express our gratitude to past and present Allen Institute staff members R. Adams, K. Aiona, A. Alpisa, J. Arnold, C. Bennet, K. Brouner, S. Butler, E. Byrnes, S. Caldejon, J. Campiche, A. Carey, J. Chen, C. Copeland, C. Cuhaciyan, T. Desta, N. Dotson, S. Faber, T. Fliss, E. Fulfs, G. Gee, T. Gilbert, L. Gourley, G. Gu, J. Heilman, N. Ivanov, K. Keyser, A. Kriedberg, J. Laoenkue, F. Lee, S. Levine, L. Luong, N. Mastan, N. Mosqueda, E. Mott, N. Motz, D. Muzia, K. Ngo, A. Oldre, E. Olson, J. Parente, J. Phillips, L. Potekhina, T. Roberts, K. Roll, D. Rosen, M. Sarreal, S. Shapouri, N. Shapovalova, C. Simpson, D. Simpson, M. Smith, N. Stewart, K. Sweeney, A. Szafer, L. Velasquez, U. Wagley, W. Wakeman, C. White and B. Youngstrom for their technical assistance. We thank C. Long for mechanical engineering contract work. We thank R. Gullapalli, A. McMillan and R. Morales for post-mortem magnetic resonance imaging and radiology interpretation of MR data; J. Cottrell, M. Davis, R. Johnson, K. Moraniec, R. Vigorito, A. Weldon and the NICHD Brain and Tissue Bank for Developmental Disorders for tissue acquisition and processing; J. Davis for donor coordination; F. Mamdani, M. Martin, E. Moon, L. Morgan, B. Rollins and D. Walsh for tissue processing and psychological autopsy (DW); D. Patel for magnetic resonance imaging; and J. Sonnen for consultation on tissue microneuropathology. We also thank the External RNA Controls Consortium (ERCC), the US National Institute of Standards (NIST) and Technology, and M. Salit for access to ERCC transcripts during Phase V testing. We are grateful to Beckman Coulter Genomics (formerly Cogenics) and their staff P. Hurban, E. Lobenhofer, K. Phillips, A. Rouse and S. Beaver for microarray data generation and design of the custom Agilent array. We also wish to thank the Allen Human Brain Atlas Advisory Council members D. Geschwind, R. Gibbs, P. Hof, E. Jones, C. Koch, C. Saper, L. Swanson, A. Toga and D. Van Essen for their scientific guidance and dedication to the successful execution of this project. The project described was supported in part by Grant Numbers 1C76HF15069-01-00 and 1 1C76HF19619-01-00 from the Department of Health and Human Services Health Resources and Services Administration Awards and its contents are solely the responsibility of the authors and do not necessarily represent the official views of the Department of Health and Human Services Health Resources and Services Administration Awards. S.G.N.G and L.V.L. were supported by the MRCD, Wellcome Trust and European Union Seventh Framework Programme under grants 241498 EUROSPIN, 242167 SynSys, and 241995 GENCODYS Projects.

Author information

Authors and Affiliations

Authors

Contributions

A.R.J., A.L.G.-B., E.H.S. and K.A.S. contributed significantly to overall project design. A.L.G.-B., E.H.S., K.A.S., A.E. and P.W. managed the tissue and sample processing in the laboratory. D.B., A.F.B., R.A.D., J.G., B.W.G., R.E.H., M.K., T.A.L., P.D.P., S.E.P., M.R., J.J.R. and B.E.S. contributed to tissue and sample processing. E.H.S. and Z.L.R. contributed to establishing the tissue acquisition pipeline. P.M.C., B.D.D., D.R.F., L.L., P.A.S., M.P.V. and H.R.Z. contributed to tissue acquisition and MR imaging. Z.L.R., A.B., M.M.C., N.D., A.J., J.M.J., E.T.L., S.C.S. and P.R.H. contributed to protocol development. S.D., J.M.J., C.R.S. and D.W. provided engineering support. A.L.G.-B., R.A.D., P.D.P., J.G.H., J.A.Mo., J.J.R. and B.E.S. contributed to the neuroanatomical design and implementation. L.N. and C.D. managed the creation of the data pipeline, visualization and mining tools. L.N., C.D. and C.C.O. contributed to the overall online product concept. L.N., C.A., M.C., J.C., T.A.D., D.F., Z.H., C.La., Y.L. and A.J.S. contributed to the creation of the data pipeline, visualization and mining tools. M.J.H., E.S.L., J.A.Mi., D.H.G., L.N.L., C.F.B., S.M.Sm., S.G.N.G., A.LG.-.B., E.H.S., K.A.S., A.B., D.B., V.F., J.G., D.R.H., S.H., C.Le., J.S., S.M.Su., P.R.H. and C.K. contributed to data analysis and interpretation. A.R.J. supervised the overall project, and the manuscript was written by M.J.H. and E.S.L. with input from other authors.

Corresponding author

Correspondence to Michael J. Hawrylycz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

This file contains Supplementary Methods 1-3 (see pages 1-2 for details), which describe in detail the methodology of tissue preparation, data generation and data analysis techniques utilized for both the project and the manuscript. (PDF 2375 kb)

Supplementary Information

This file contains Supplementary Figures 1-14 and legends for Supplementary Tables 1-10. (PDF 3460 kb)

Supplementary Tables

This file contains Supplementary Tables 1-10 (see Supplementary Information file for legends). (ZIP 19331 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawrylycz, M., Lein, E., Guillozet-Bongaarts, A. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012). https://doi.org/10.1038/nature11405

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11405

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing