Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Predicting disease using genomics

Abstract

Information from the human genome sequence will eventually alter many aspects of clinical practice. It will increase through our understanding of disease mechanisms, and guide the development of new drugs and therapeutic procedures. In the short term, however, knowledge of the genome will have a profound clinical impact on the diagnostic capability of clinical genetics laboratories. Molecular phenotyping using genetic and genomic information will allow early and more accurate prediction and diagnosis of disease and of disease progression. Medicine will become oriented towards disease prevention rather than efforts to cure people at late stages of illness.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagnostic medicine.
Figure 2: Predictive testing for complex genetic traits in families: sudden cardiac death.

Similar content being viewed by others

References

  1. Mira, M. T. et al. Susceptibility to leprosy is associated with PARK2 and PACRG. Nature 427, 636–640 (2004).

    Article  ADS  CAS  Google Scholar 

  2. Allen, M. et al. Positional cloning of a novel gene influencing asthma from chromosome 2q14. Nature Genet. 35, 258–263 (2003).

    Article  CAS  Google Scholar 

  3. van de Vijver, M. J. et al. Gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    Article  CAS  Google Scholar 

  4. Weigelt, B. et al. Gene expression profiles of primary breast tumours maintained in distant metastases. Proc. Natl Acad. Sci. USA 100, 15901–15905 (2003).

    Article  ADS  CAS  Google Scholar 

  5. Wong, Y. F. et al. Expression genomics of cervical cancer: Molecular classification and prediction of radiotherapy response by DNA microarray. Clin. Cancer Res. 9, 5486–5492 (2003).

    CAS  PubMed  Google Scholar 

  6. Ross, M. E. et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 102, 2951–2959 (2003).

    Article  CAS  Google Scholar 

  7. Petricoin III, E. F. et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359, 572–577 (2002).

    Article  CAS  Google Scholar 

  8. Bell, G. I. & Polonsky, K. S. Diabetes mellitus and genetically programmed defects in β-cell function. Nature 414, 788–791 (2001).

    Article  ADS  CAS  Google Scholar 

  9. Gloyn, A. L. et al. Large-scale association studies of variants in genes encoding the pancreatic β-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 52, 568–572 (2003).

    Article  CAS  Google Scholar 

  10. Brindle, J. T. et al. Rapid and non-invasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nature Med. 8, 1439–1444 (2002).

    Article  CAS  Google Scholar 

  11. Paul, S. M. & Jorden, V. S. HIV resistance testing. A clinical tool. N. J. Med. 100, 44–49 (2003).

    PubMed  Google Scholar 

  12. Poynard, T., Yeun, M. F., Ratziu, V. & Lai, C. L. Viral hepatitis C. Lancet 362, 2095–2100 (2003).

    Article  CAS  Google Scholar 

  13. Young, J. et al. Stable partnership and progression to AIDS or death in HIV infected patients receiving highly active antiretroviral therapy: Swiss HIV cohort study. Br. Med. J. 328, 15 (2004).

    Article  Google Scholar 

  14. The U.S.–Venezuela, Collaborative Research Project. Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington's disease age of onset. Proc. Natl Acad. Sci. USA 101, 3498–3503 (2004).

  15. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet 361, 2005–2016 (2003).

  16. Ponz de Leon, M. et al. Genetic testing among high-risk individuals in families with hereditary nonpolyposis colorectal cancer. Br. J. Cancer. 90, 882–887 (2004).

    Article  CAS  Google Scholar 

  17. Weatherall, D. J. Phenotype–genotype relationships in monogenic disease: lessons from the thalassaemias. Nature Rev. Genet. 2, 245–255 (2001).

    Article  CAS  Google Scholar 

  18. Ford, D. et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. Am. J. Hum. Genet. 62, 676–689 (1998).

    Article  CAS  Google Scholar 

  19. Grody, W. W. Molecular genetic risk screening. Annu. Rev. Med. 54, 473–490 (2003).

    Article  CAS  Google Scholar 

  20. Keating, M. T. & Sanguinetti, M. C. Molecular and cellular mechanisms of cardiac arrhythmias. Cell 104, 569–580 (2001).

    Article  CAS  Google Scholar 

  21. Watkins, H. Sudden death in hypertrophic cardiomyopathy. N. Engl. J. Med. 342, 422–444 (2000).

    Article  CAS  Google Scholar 

  22. Mohler, P. J. et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 421, 634–639 (2003).

    Article  ADS  CAS  Google Scholar 

  23. Hartge, P. Genes, hormones, and pathways to breast cancer. N. Engl. J. Med. 348, 2352–2354 (2003).

    Article  Google Scholar 

  24. Kinzler, K.W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    Article  CAS  Google Scholar 

  25. Fajans, S. S., Bell, G. I. & Polonsky, K. S. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N. Engl. J. Med. 345, 971–980 (2001).

    Article  CAS  Google Scholar 

  26. Edlund, H. Transcribing diabetes. Diabetes 47, 1817–1823 (1998).

    Article  CAS  Google Scholar 

  27. Weedon, M. N. et al. Meta-analysis and a large association study confirm a role for calpain-10 variation in type 2 diabetes susceptibility. Am. J. Hum. Genet. 73, 1208–1212 (2003).

    Article  CAS  Google Scholar 

  28. Su, A. I. et al. Large-scale analysis of the human and mouse transcriptomes. Proc. Natl Acad. Sci. USA 99, 4465–4470 (2002).

    Article  ADS  CAS  Google Scholar 

  29. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    Article  ADS  CAS  Google Scholar 

  30. Schadt, E. E. et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302 (2003).

    Article  ADS  CAS  Google Scholar 

  31. Weber, W. W. Pharmacogenetics (Oxford Univ. Press, New York, 1997).

    Google Scholar 

  32. Evans, D. A. P. et al. Genetic control of isoniazid metabolism in man. Br. Med. J. 2, 485–491 (1960).

    Article  CAS  Google Scholar 

  33. Krynetski, E. Y. et al. A single point mutation leads to loss of catalytic activity in human thiopurine S-methyltransferase. Proc. Natl Acad. Sci. USA 92, 949–953 (1995).

    Article  ADS  CAS  Google Scholar 

  34. Harris, B. E., Carpenter, J. T. & Diasio, R. B. Severe 5-fluorouracil toxicity secondary to dihydropyrimidine dehydrogenase deficiency. A potential more common pharmacogenetic syndrome. Cancer 68, 499–501 (1991).

    Article  CAS  Google Scholar 

  35. Chung, W. H. et al. Medical genetics: a marker for Stevens–Johnson syndrome. Nature 428, 486 (2004).

    Article  ADS  CAS  Google Scholar 

  36. Savage, D. G. & Antman, K. H. Imatinib mesylate — A new oral targeted therapy. N. Engl. J. Med. 346, 683–693 (2002).

    Article  CAS  Google Scholar 

  37. Pearson, E. R. et al. Genetic cause of hyperglycaemia in response to treatment in diabetes. Lancet 362, 1275–1281 (2003).

    Article  CAS  Google Scholar 

  38. Fornier, M., Risio, M., Van Poznak, C. & Siedman, A. HER2 testing and correlation with efficacy of trastuzumab therapy. Oncology 16, 1340–1348; 1351–1352; 1355–1358 (2002).

    PubMed  Google Scholar 

  39. Esteller, M. et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N. Engl. J. Med. 343, 1350–1354 (2000).

    Article  CAS  Google Scholar 

  40. Bohen, S. P. et al. Variation in the gene expression patterns in follicular lymphoma and the response to rituximab. Proc. Natl Acad. Sci. USA 100, 1926–1930 (2003).

    Article  ADS  CAS  Google Scholar 

  41. Kuivenhoven, J. A. et al. The role of a common variant of the cholesteryl ester transfer protein gene in the progression of coronary atherosclerosis. N. Engl. J. Med. 338, 86–93 (1998).

    Article  CAS  Google Scholar 

  42. Drazen, J. M. et al. Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nature Genet. 22, 168–170 (1999).

    Article  CAS  Google Scholar 

  43. Johnstone, E. C. et al. Genetic variation in dopaminergic pathways and short-term effectiveness of the nicotine patch. Pharmacogenetics (in the press).

  44. Seligsohn, U. & Lubetsky, A. Genetic susceptibility to venous thrombosis. N. Engl. J. Med. 344, 1222–1231 (2001).

    Article  CAS  Google Scholar 

  45. Mallan, S. et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359, 727–732 (2002).

    Article  Google Scholar 

  46. Seidman, J. G. & Seidman, C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell 104, 557–567 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

I am involved in a range of activities in this broad scientific area that might be perceived as creating competing financial interests. I am a non-executive director of the genomics company Oxagen Ltd, which has in the past worked on the genetics of common disease. It now focuses largely on studying GPCR polymorphisms and disease susceptibility. I hold no equity interest in this company. I am also a non-executive director of the biotech company Avidex Ltd and of Roche AG, a pharmaceutical company with interests in novel diagnostics and the use of genetics to develop new therapeutics. I have 1,000 non-voting certificates in this company.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bell, J. Predicting disease using genomics. Nature 429, 453–456 (2004). https://doi.org/10.1038/nature02624

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02624

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing