Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Deciphering skeletal patterning: clues from the limb

Abstract

Even young children can distinguish a Tyrannosaurus rex from a Brontosaurus by observing differences in bone size, shape, number and arrangement, that is, skeletal pattern. But despite our extensive knowledge about cartilage and bone formation per se, it is still largely a mystery how skeletal pattern is established. Much of what we do know has been learned from studying limb development in chicken and mouse embryos. Based on the data from such studies, models for how limb skeletal pattern is established have been proposed and continue to be hotly debated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Key stages in limb skeletal development.
Figure 3: Signalling centres in the limb bud.
Figure 4: Two models for proximodistal limb skeletal patterning.

Similar content being viewed by others

References

  1. Christ, B., Jacob, H. J. & Jacob, M. Experimental analysis of the origin of the wing musculature in avian embryos. Anat. Embryol. 150, 171–186 (1977).

    Article  CAS  Google Scholar 

  2. Chevallier, A., Kieny, M. & Mauger, A. Limb-somite relationship: origin of the limb musculature. J. Embryol. Exp. Morphol. 41, 245–258 (1977).

    CAS  PubMed  Google Scholar 

  3. Wilting, J. et al. Angiogenic potential of the avian somite. Dev. Dyn. 202, 165–171 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Kardon, G., Campbell, J. K. & Tabin, C. J. Local extrinsic signals determine muscle and endothelial cell fate and patterning in the vertebrate limb. Dev. Cell 3, 533–545 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Capdevila, J. & Izpisua Belmonte, J. C. Patterning mechanisms controlling vertebrate limb development. Annu. Rev. Cell Dev. Biol. 17, 87–132 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Tickle, C. & Munsterberg, A. Vertebrate limb development—the early stages in chick and mouse. Curr. Opin. Genet. Dev. 11, 476–481 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Martin, G. Making a vertebrate limb: new players enter from the wings. BioEssays 23, 865–868 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Sun, X., Mariani, F. V. & Martin, G. R. Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature 418, 501–508 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Lewandoski, M., Sun, X. & Martin, G. R. Fgf8 signalling from the AER is essential for normal limb development. Nature Genet. 26, 460–463 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Moon, A. M. & Capecchi, M. R. Fgf8 is required for outgrowth and patterning of the limbs. Nature Genet. 26, 455–459 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Vargesson, N. et al. Cell fate in the chick limb bud and relationship to gene expression. Development 124, 1909–1918 (1997).

    CAS  PubMed  Google Scholar 

  12. Dudley, A. T., Ros, M. A. & Tabin, C. J. A re-examination of proximodistal patterning during vertebrate limb development. Nature 418, 539–544 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Janners, M. Y. & Searls, R. L. Changes in rate of cellular proliferation during the differentiation of cartilage and muscle in the mesenchyme of the embryonic chick wing. Dev. Biol. 23, 136–165 (1970).

    Article  CAS  PubMed  Google Scholar 

  14. Hall, B. K. & Miyake, T. All for one and one for all: condensations and the initiation of skeletal development. BioEssays 22, 138–147 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Oster, G., Shubin, N., Murray, J. & Alberch, P. Evolution and morphogenetic rules: the shape of the vertebrate limb in ontogeny and phylogeny. Evolution 42, 862–884 (1988).

    Article  PubMed  Google Scholar 

  16. DeLise, A. M., Fischer, L. & Tuan, R. S. Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage 8, 309–334 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Gruneberg, H. The Pathology of Development. A study of Inherited Skeletal Disorders in Animals (Blackwell Scientific Publications, Oxford, 1963).

    Google Scholar 

  18. Wolpert, L., Tickle, C. & Sampford, M. The effect of cell killing by X-irradiation on pattern formation in the chick limb. J. Embryol. Exp. Morphol. 50, 175–193 (1979).

    CAS  PubMed  Google Scholar 

  19. Dvorak, L. & Fallon, J. F. Talpid2 mutant chick limb has anteroposterior polarity and altered patterns of programmed cell death. Anat. Rec. 231, 251–260 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. King, J. A., Marker, P. C., Seung, K. J. & Kingsley, D. M. BMP5 and the molecular, skeletal, and soft-tissue alterations in short ear mice. Dev. Biol. 166, 112–122 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Akiyama, H., Chaboissier, M. C., Martin, J. F., Schedl, A. & de Crombrugghe, B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 16, 2813–2828 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cohn, M. J., Lovejoy, C. O., Wolpert, L. & Coates, M. I. Branching, segmentation and the metapterygial axis: pattern versus process in the vertebrate limb. BioEssays 24, 460–465 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Francis-West, P. H. et al. Mechanisms of GDF-5 action during skeletal development. Development 126, 1305–1315 (1999).

    CAS  PubMed  Google Scholar 

  24. Storm, E. E. et al. Limb alterations in brachypodism mice due to mutations in a new member of the TGF-β superfamily. Nature 368, 639–643 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Storm, E. E. & Kingsley, D. M. GDF5 coordinates bone and joint formation during digit development. Dev. Biol. 209, 11–27 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Brunet, L. J., McMahon, J. A., McMahon, A. P. & Harland, R. M. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280, 1455–1457 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Hartmann, C. & Tabin, C. J. Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell 104, 341–351 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. DeChiara, T. M. et al. Ror2, encoding a receptor-like tyrosine kinase, is required for cartilage and growth plate development. Nature Genet. 24, 271–274 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Krumlauf, R. Hox genes in vertebrate development. Cell 78, 191–201 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Zakany, J. & Duboule, D. Hox genes in digit development and evolution. Cell Tissue Res. 296, 19–25 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Kmita, M., Fraudeau, N., Herault, Y. & Duboule, D. Serial deletions and duplications suggest a mechanism for the collinearity of Hoxd genes in limbs. Nature 420, 145–150 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Nelson, C. E. et al. Analysis of Hox gene expression in the chick limb bud. Development 122, 1449–1466 (1996).

    CAS  PubMed  Google Scholar 

  33. Goff, D. J. & Tabin, C. J. Analysis of Hoxd-13 and Hoxd-11 misexpression in chick limb buds reveals that Hox genes affect both bone condensation and growth. Development 124, 627–636 (1997).

    CAS  PubMed  Google Scholar 

  34. Davis, A. P., Witte, D. P., Hsieh-Li, H. M., Potter, S. S. & Capecchi, M. R. Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature 375, 791–795 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Bamshad, M. et al. Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome. Nature Genet. 16, 311–315 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Bruneau, B. G. et al. A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell 106, 709–721 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Basson, C. T. et al. Mutations in human TBX5 cause limb and cardiac malformation in Holt-Oram syndrome. Nature Genet. 15, 30–35 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Li, Q. Y. et al. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nature Genet. 15, 21–29 (1997).

    Article  PubMed  Google Scholar 

  39. Davenport, T. G., Jerome-Majewska, L. A. & Papaioannou, V. E. Mammary gland, limb, and yolk sac defects in mice lacking Tbx3, the gene mutated in human ulnar mammary syndrome. Development 130, 2263–2273 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Agarwal, P. et al. Tbx5 is essential for forelimb bud initiation following patterning of the limb field in the mouse embryo. Development 130, 623–633 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Hinchliffe, J. R. & Johnson, D. R. The Development of the Vertebrate Limb: An Approach Through Experiment, Genetics, and Evolution (Clarendon, Oxford, 1980).

    Google Scholar 

  42. Martin, G. R. The roles of FGFs in the early development of vertebrate limbs. Genes Dev. 12, 1571–1586 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Johnson, R. L. & Tabin, C. J. Molecular models for vertebrate limb development. Cell 90, 979–990 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Niswander, L. Pattern formation: old models out on a limb. Nature Rev. Genet. 4, 133–143 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Saunders, J. W. Jr The proximo-distal sequence of the origin of the parts of the chick wing and the role of the ectoderm. J. Exp. Zool. 108, 363–403 (1948).

    Article  PubMed  Google Scholar 

  46. Barrow, J. et al. Ectodermal Wnt3/β-catenin signaling is required for the establishment and maintenance of the apical ectodermal ridge. Genes Dev. 17, 394–409 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fallon, J. et al. FGF-2: apical ectodermal ridge growth signal for chick limb development. Science 264, 104–107 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Niswander, L., Tickle, C., Vogel, A., Booth, I. & Martin, G. R. FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell 75, 579–587 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Rowe, D. A., Cairns, J. M. & Fallon, J. F. Spatial and temporal patterns of cell death in limb bud mesoderm after apical ectodermal ridge removal. Dev. Biol. 93, 83–91 (1982).

    Article  CAS  PubMed  Google Scholar 

  50. Moon, A. M., Boulet, A. M. & Capecchi, M. R. Normal limb development in conditional mutants of Fgf4. Development 127, 989–996 (2000).

    CAS  PubMed  Google Scholar 

  51. Sun, X. et al. Conditional inactivation of Fgf4 reveals complexity of signalling during limb bud development. Nature Genet. 25, 83–86 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Saunders, J. W. Jr & Gasseling, M. T. in Epithelial-Mesenchymal Interactions (eds Fleischmajer, R. & Billingham, R. R.) 289–314 (Williams and Wilkins, Baltimore, 1968).

    Google Scholar 

  53. Pearse, R. V. II & Tabin, C. J. The molecular ZPA. J. Exp. Zool. 282, 677–690 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Johnson, R. L., Riddle, R. D., Laufer, E. & Tabin, C. Sonic hedgehog: a key mediator of anterior-posterior patterning of the limb and dorso-ventral patterning of axial embryonic structures. Biochem. Soc. Trans. 22, 569–574 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Drossopoulou, G. et al. A model for anteroposterior patterning of the vertebrate limb based on sequential long- and short-range Shh signalling and Bmp signalling. Development 127, 1337–1348 (2000).

    CAS  PubMed  Google Scholar 

  56. Lewis, P. M. et al. Cholesterol modification of Sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell 105, 599–612 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Litingtung, Y., Dahn, R. D., Li, Y., Fallon, J. F. & Chiang, C. Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature 418, 979–983 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Aza-Blanc, P., Ramirez-Weber, F. A., Laget, M. P., Schwartz, C. & Kornberg, T. B. Proteolysis that is inhibited by Hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor. Cell 89, 1043–1053 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Chiang, C. et al. Manifestation of the limb prepattern: limb development in the absence of Sonic hedgehog function. Dev. Biol. 236, 421–435 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Kraus, P., Fraidenraich, D. & Loomis, C. A. Some distal limb structures develop in mice lacking Sonic hedgehog signaling. Mech. Dev. 100, 45–58 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. te Welscher, P. et al. Progression of vertebrate limb development through SHH-mediated counteraction of GLI3. Science 298, 827–830 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Dahn, R. D. & Fallon, J. F. Interdigital regulation of digit identity and homeotic transformation by modulated BMP signaling. Science 289, 438–441 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Slack, J. M. W. From Egg to Embryo: Determinative Events in Early Development (Cambridge Univ. Press, Cambridge, 1983).

    Google Scholar 

  64. Wolpert, L. Positional information and pattern formation. Curr. Top. Dev. Biol. 6, 183–224 (1971).

    Article  CAS  PubMed  Google Scholar 

  65. Summerbell, D., Lewis, J. H. & Wolpert, L. Positional information in chick limb morphogenesis. Nature 244, 492–496 (1973).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Wolpert, L., Lewis, J. & Summerbell, D. in CIBA Foundation Symposium on Cell Patterning 95–130 (Elsevier, London, 1974).

    Google Scholar 

  67. Kieny, M. in Vertebrate Limb and Somite Morphogenesis (eds Ede, D. A., Hinchliffe, J. R. & Balls, M.) 87–103 (Cambridge Univ. Press, Cambridge, 1977).

    Google Scholar 

  68. Kieny, M. & Pautou, M.-P. Proximo-distal pattern regulation in deficient avian limb buds. Wilhelm Roux Arch. 183, 177–191 (1977).

    Article  Google Scholar 

  69. Hornbruch, A. & Wolpert, L. Cell division in the early growth and morphogenesis of the chick limb. Nature 226, 764–766 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Tickle, C. & Wolpert, L. The progress zone—alive or dead? Nature Cell Biol. 4, E216–E217 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Maini, P. K. & Solursh, M. Cellular mechanisms of pattern formation in the developing limb. Int. Rev. Cytol. 129, 91–133 (1991).

    Article  CAS  PubMed  Google Scholar 

  72. Kingsley, D. M. Genetic control of bone and joint formation. Novartis Found. Symp. 232, 213–222 (2001).

    CAS  PubMed  Google Scholar 

  73. Wolpert, L. Limb patterning: reports of model's death exaggerated. Curr. Biol. 12, R628–R630 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Fallon, C. Tabin and colleagues in our laboratory for insightful criticism and suggestions for improving the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gail R. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariani, F., Martin, G. Deciphering skeletal patterning: clues from the limb. Nature 423, 319–325 (2003). https://doi.org/10.1038/nature01655

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01655

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing