Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

NF-κB blockade and oncogenic Ras trigger invasive human epidermal neoplasia

Abstract

The nuclear factor NF-κB and oncogenic Ras can alter proliferation in epidermis, the most common site of human cancer1,2. These proteins are implicated in epidermal squamous cell carcinoma in mice3,4,5, however, the potential effects of altering their function are uncertain. Whereas inhibition of NF-κB enhances apoptosis in certain tumours6, blockade of NF-κB predisposes murine skin to squamous cell carcinoma5,7. Because therapeutics inhibiting Ras and NF-κB pathways are being developed to treat human cancer8,9, it is essential to assess the effects of altering these regulators. The medical relevance of murine studies is limited, however, by differences between mouse and human skin, and by the greater ease of transforming murine cells. Here we show that in normal human epidermal cells both NF-κB and oncogenic Ras trigger cell-cycle arrest. Growth arrest triggered by oncogenic Ras can be bypassed by IκBα-mediated blockade of NF-κB, generating malignant human epidermal tissue resembling squamous cell carcinoma. Human cell tumorigenesis is dependent on laminin 5 and α6β4 integrin. Thus, IκBα circumvents restraints on growth promotion induced by oncogenic Ras and can act with Ras to induce invasive human tissue neoplasia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ras and IκBα human epidermal neoplasia.
Figure 2: IκBα rescues keratinocyte growth arrest triggered by oncogenic Ras.
Figure 3: Effects of Ras, p65 and IκBα on CDK expression, proliferation, telomere length and apoptosis.
Figure 4: Ras–IκBα tumorigenesis.

Similar content being viewed by others

References

  1. Miller, D. L. & Weinstock, M. A. Nonmelanoma skin cancer in the United States: incidence. J. Am. Acad. Dermatol. 30, 774–778 (1994)

    Article  CAS  Google Scholar 

  2. Alam, M. & Ratner, D. Cutaneous squamous-cell carcinoma. N. Engl. J. Med. 344, 975–983 (2001)

    Article  CAS  Google Scholar 

  3. Yuspa, S. H. The pathogenesis of squamous cell cancer: lessons learned from studies of skin carcinogenesis. The thirty-third G. H. A. Clowes Memorial Award Lecture. Cancer Res. 54, 1178–1189 (1994)

    CAS  PubMed  Google Scholar 

  4. Pazzaglia, S. et al. Analysis of c-Ha-ras gene mutations in skin tumors induced in carcinogenesis-susceptible and carcinogenesis-resistant mice by different two-stage protocols or tumour promoter alone. Mol. Carcinog. 30, 111–118 (2001)

    Article  CAS  Google Scholar 

  5. van Hogerlinden, M., Rozell, B. L., Ahrlund-Richter, L. & Toftgard, R. Squamous cell carcinomas and increased apoptosis in skin with inhibited Rel/nuclear factor-κB signaling. Cancer Res. 59, 3299–3303 (1999)

    CAS  PubMed  Google Scholar 

  6. Yamamoto, Y. & Gaynor, R. B. Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J. Clin. Invest. 107, 135–142 (2001)

    Article  CAS  Google Scholar 

  7. Seitz, C. S., Lin, Q., Deng, H. & Khavari, P. A. Alterations in NF-κB function in transgenic epithelial tissue demonstrate a growth inhibitory role for NF-κB. Proc. Natl Acad. Sci. USA 95, 2307–2312 (1998)

    Article  ADS  CAS  Google Scholar 

  8. Karin, M., Cao, Y., Greten, F. R. & Li, Z. W. NF-κB in cancer: from innocent bystander to major culprit. Nature Rev. Cancer 2, 301–310 (2002)

    Article  CAS  Google Scholar 

  9. Adjei, A. A. Blocking oncogenic Ras signaling for cancer therapy. J. Natl Cancer Inst. 93, 1062–1074 (2001)

    Article  CAS  Google Scholar 

  10. Van Antwerp, D. J., Martin, S. J., Kafri, T., Green, D. R. & Verma, I. M. Suppression of TNF-α-induced apoptosis by NF-κB. Science 274, 787–789 (1996)

    Article  ADS  CAS  Google Scholar 

  11. Robbins, P. B. et al. In vivo restoration of laminin 5 β3 expression and function in junctional epidermolysis bullosa. Proc. Natl Acad. Sci. USA 98, 5193–5198 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Mayo, M. W. et al. Requirement of NF-κB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science 278, 1812–1815 (1997)

    Article  ADS  CAS  Google Scholar 

  13. Cogswell, P. C., Guttridge, D. C., Funkhouser, W. K. & Baldwin, A. S. Jr Selective activation of NF-κB subunits in human breast cancer: potential roles for NF-κB2/p52 and for Bcl-3. Oncogene 19, 1123–1131 (2000)

    Article  CAS  Google Scholar 

  14. Mitchell, C. E., Belinsky, S. A. & Lechner, J. F. Detection and quantitation of mutant K-ras codon 12 restriction fragments by capillary electrophoresis. Anal. Biochem. 224, 148–153 (1995)

    Article  CAS  Google Scholar 

  15. Seitz, C. S., Deng, H., Hinata, K., Lin, Q. & Khavari, P. A. Nuclear factor κB subunits induce epithelial cell growth arrest. Cancer Res. 60, 4085–4092 (2000)

    CAS  PubMed  Google Scholar 

  16. Lazarov, M. et al. CDK4 coexpression with Ras generates malignant human epidermal tumorigenesis. Nature Med. 8, 1105–1114 (2002)

    Article  CAS  Google Scholar 

  17. Bonni, A. et al. Cell survival promoted by the Ras–MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286, 1358–1362 (1999)

    Article  CAS  Google Scholar 

  18. Stambolic, V., Mak, T. W. & Woodgett, J. R. Modulation of cellular apoptotic potential: contributions to oncogenesis. Oncogene 18, 6094–6103 (1999)

    Article  CAS  Google Scholar 

  19. Elenbaas, B. et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 15, 50–65 (2001)

    Article  CAS  Google Scholar 

  20. Watt, F. M. Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J. 21, 3919–3926 (2002)

    Article  CAS  Google Scholar 

  21. Mercurio, A. M. & Rabinovitz, I. Towards a mechanistic understanding of tumour invasion—lessons from the α6β4 integrin. Semin. Cancer Biol. 11, 129–141 (2001)

    Article  CAS  Google Scholar 

  22. Savoia, P., Trusolino, L., Pepino, E. & Marchisio, P. C. Expression and topography of integrins and basement membrane proteins in epidermal carcinomas: basal but not squamous cell carcinomas display loss of α6β4 and BM-600/nicein. J. Invest. Dermatol. 101, 352–358 (1993)

    Article  CAS  Google Scholar 

  23. Nordemar, S. et al. Laminin-5 as a predictor of invasiveness in cancer in situ lesions of the larynx. Anticancer Res. 21, 509–512 (2001)

    CAS  PubMed  Google Scholar 

  24. Dajee, M., Tarutani, M., Deng, H., Cai, T. & Khavari, P. A. Epidermal Ras blockade demonstrates spatially localized Ras promotion of proliferation and inhibition of differentiation. Oncogene 21, 1527–1538 (2002)

    Article  CAS  Google Scholar 

  25. Marinkovich, M. P., Herron, G. S., Khavari, P. A. & Bauer, E. A. Dermatology in General Medicine (ed. Freedberg, I. M.) 690–702 (McGraw-Hill, New York, 1999)

    Google Scholar 

  26. Zimonjic, D., Brooks, M. W., Popescu, N., Weinberg, R. A. & Hahn, W. C. Derivation of human tumour cells in vitro without widespread genomic instability. Cancer Res. 61, 8838–8844 (2001)

    CAS  PubMed  Google Scholar 

  27. Ghosh, S. & Karin, M. Missing pieces in the NF-κB puzzle. Cell 109 (Suppl.), S81–S96 (2002)

    Article  CAS  Google Scholar 

  28. Pruitt, K. & Der, C. J. Ras and Rho regulation of the cell cycle and oncogenesis. Cancer Lett. 171, 1–10 (2001)

    Article  CAS  Google Scholar 

  29. Wick, M., Zubov, D. & Hagen, G. Genomic organization and promoter characterization of the gene encoding the human telomerase reverse transcriptase (hTERT). Gene 232, 97–106 (1999)

    Article  CAS  Google Scholar 

  30. Marinkovich, M. P., Lunstrum, G. P. & Burgeson, R. E. The anchoring filament protein kalinin is synthesized and secreted as a high molecular weight precursor. J. Biol. Chem. 267, 17900–17906 (1992)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Gladstone, M. Cooper, E. Fincher and Z. Cooper for SCC specimens; A. Anguiano for assistance with SKY-FISH; and N. Griffiths and P. Bernstein for administrative support. This work was supported by the US Veterans Affairs Office of Research and Development and by grants from the NIH to P.A.K. We acknowledge the generous support of the Epidermolysis Bullosa Research Foundation and the Nu Skin Center for Research at Stanford.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Khavari.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dajee, M., Lazarov, M., Zhang, J. et al. NF-κB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 421, 639–643 (2003). https://doi.org/10.1038/nature01283

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01283

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing