Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fanconi anemia group C protein prevents apoptosis in hematopoietic cells through redox regulation of GSTP1

Abstract

The Fanconi anemia group C protein (FANCC) plays an important role in hematopoiesis by ensuring the survival of hematopoietic progenitor cells through an unknown mechanism. We investigated the function of FANCC by identifying FANCC-binding proteins in hematopoietic cells. Here we show that glutathione S-transferase P1-1 (GSTP1) interacts with FANCC, and that overexpression of both proteins in a myeloid progenitor cell line prevents apoptosis following factor deprivation. FANCC increases GSTP1 activity after the induction of apoptosis. GSTP1 is an enzyme that catalyzes the detoxification of xenobiotics and by-products of oxidative stress, and it is frequently upregulated in neoplastic cells. Although FANCC lacks homology with conventional disulfide reductases, it functions by preventing the formation of inactivating disulfide bonds within GSTP1 during apoptosis. The prevention of protein oxidation by FANCC reveals a novel mechanism of enzyme regulation during apoptosis and has implications for the treatment of degenerative diseases with thiol reducing agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of Gstp1 as a Fancc-interacting protein.
Figure 2: Co-expression of GSTP1 and FANCC promotes increased survival and suppression of apoptosis.
Figure 3: Co-expression of FANCC and GSTP1 in 32D cells stabilizes both proteins following IL-3 withdrawal.
Figure 4: FANCC suppresses apoptosis even in the absence of GSH in 32D cells.
Figure 5: FANCC prevents oxidation of GSTP1 during apoptosis in the absence of GSH.

Similar content being viewed by others

References

  1. Garcia-Higuera, I., Kuang, Y. & D'Andrea, A.D. The molecular and cellular biology of Fanconi anemia. Curr. Opin. Hematol. 6, 83–88 (1999).

    Article  CAS  Google Scholar 

  2. Joenje, H. & Gille, J.J.P. Oxygen metabolism and chromosomal breakage in Fanconi anemia. in Fanconi Anemia: Clinical, Cytogenetic, and Experimental Aspects (eds. Auerbach, A.D., Schroeder-Kurth, T.M. & Obe, G.) 174–182 (Springer, Berlin, 1989).

    Chapter  Google Scholar 

  3. Joenje, H. et al. Complementation analysis in Fanconi anemia: assignment of the reference FA-H patient to group A. Am. J. Hum. Genet. 67, 759–762 (2000).

    Article  CAS  Google Scholar 

  4. de Winter, J.P. et al. The Fanconi anemia protein FANCF forms a nuclear complex with FANCA, FANCC and FANCG. Hum. Mol. Genet. 9, 2665–2674 (2000).

    Article  CAS  Google Scholar 

  5. Medhurst, A.L., Huber, P.A., Waisfisz, Q., de Winter, J.J. & Mathew, C.G. Direct interactions of the five known Fanconi anaemia proteins suggest a common functional pathway. Hum. Mol. Genet. 10, 423–429 (2001).

    Article  CAS  Google Scholar 

  6. Garcia-Higuera, I. et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell. 7, 249–262 (2001).

    Article  CAS  Google Scholar 

  7. Youssoufian, H. Localization of Fanconi anemia C protein to the cytoplasm of mammalian cells. Proc. Natl. Acad. Sci. USA 91, 7975–7979 (1994).

    Article  CAS  Google Scholar 

  8. Youssoufian, H. Cytoplasmic localization of FAC is essential for the correction of a prerepair defect in Fanconi anemia group C cells. J. Clin. Invest. 97, 2003–2010 (1996).

    Article  CAS  Google Scholar 

  9. Kruyt, F.A. et al. Abnormal microsomal detoxification implicated in Fanconi anemia group C by interaction of the FAC protein with NADPH cytochrome P450 reductase. Blood 92, 3050–3056 (1998).

    CAS  PubMed  Google Scholar 

  10. Hoshino, T. et al. Molecular chaperone GRP94 binds to the Fanconi anemia group C protein and regulates its intracellular expression. Blood 91, 4379–4386 (1998).

    CAS  PubMed  Google Scholar 

  11. Hoatlin, M.E. et al. A novel BTB/POZ transcriptional repressor protein interacts with the Fanconi anemia group C protein and PLZF. Blood 94, 3737–3747 (1999).

    CAS  PubMed  Google Scholar 

  12. Cumming, R.C., Liu, J.M., Youssoufian, H. & Buchwald, M. Suppression of apoptosis in hematopoietic factor-dependent progenitor cell lines by expression of the FAC gene. Blood 88, 4558–4567 (1996).

    CAS  PubMed  Google Scholar 

  13. Wang, J. et al. Overexpression of the fanconi anemia group C gene (FAC) protects hematopoietic progenitors from death induced by Fas-mediated apoptosis. Cancer Res. 58, 3538–3541 (1998).

    CAS  PubMed  Google Scholar 

  14. Rathbun, R.K. et al. Inactivation of the Fanconi anemia group C gene augments interferon- gamma-induced apoptotic responses in hematopoietic cells. Blood 90, 974–985 (1997).

    CAS  PubMed  Google Scholar 

  15. Haneline, L.S. et al. Multiple inhibitory cytokines induce deregulated progenitor growth and apoptosis in hematopoietic cells from Fac−/− mice. Blood 91, 4092–4098 (1998).

    CAS  PubMed  Google Scholar 

  16. Otsuki, T. et al. Tumor necrosis factor-α and CD95 ligation suppress erythropoiesis in Fanconi anemia C gene knockout mice. J. Cell. Physiol. 179, 79–86 (1999).

    Article  CAS  Google Scholar 

  17. Kodym, R., Calkins, P. & Story, M. The cloning and characterization of a new stress response protein. A mammalian member of a family of theta class glutathione S-transferase-like proteins. J. Biol. Chem. 274, 5131–5137 (1999).

    Article  CAS  Google Scholar 

  18. Voehringer, D.W. et al. Gene microarray identification of redox and mitochondrial elements that control resistance or sensitivity to apoptosis. Proc. Natl. Acad. Sci. USA 97, 2680–2685 (2000).

    Article  CAS  Google Scholar 

  19. Kampranis, S.C. et al. A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast. J. Biol. Chem. 275, 29207–29216 (2000).

    Article  CAS  Google Scholar 

  20. Hayes, J.D. & Pulford, D.J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol. 30, 445–600 (1995).

    Article  CAS  Google Scholar 

  21. Hayes, J.D. & McLellan, L.I. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic. Res. 31, 273–300 (1999).

    Article  CAS  Google Scholar 

  22. Meister, A. Selective modification of glutathione metabolism. Science 220, 472–477 (1983).

    Article  CAS  Google Scholar 

  23. van den Dobbelsteen, D.J. et al. Rapid and specific efflux of reduced glutathione during apoptosis induced by anti-Fas/APO-1 antibody. J. Biol. Chem. 271, 15420–15427 (1996).

    Article  CAS  Google Scholar 

  24. Bojes, H.K. et al. Bcl-xL overexpression attenuates glutathione depletion in FL5.12 cells following interleukin-3 withdrawal. Biochem. J. 325, 315–319 (1997).

    Article  CAS  Google Scholar 

  25. Bojes, H.K., Feng, X., Kehrer, J.P. & Cohen, G.M. Apoptosis in hematopoietic cells (FL5.12) caused by interleukin-3 withdrawal: relationship to caspase activity and the loss of glutathione. Cell. Death Differ. 6, 61–70 (1999).

    Article  CAS  Google Scholar 

  26. Shen, H. et al. Modulation of class π glutathione transferase activity by sulfhydryl group modification. Arch. Biochem. Biophys. 286, 178–182 (1991).

    Article  CAS  Google Scholar 

  27. Shen, H., Tsuchida, S., Tamai, K. & Sato, K. Identification of cysteine residues involved in disulfide formation in the inactivation of glutathione transferase P-form by hydrogen peroxide. Arch. Biochem. Biophys. 300, 137–141 (1993).

    Article  CAS  Google Scholar 

  28. Terada, T. et al. Modulation of glutathione S-transferase activity by a thiol/disulfide exchange reaction and involvement of thioltransferase. Arch. Biochem. Biophys. 300, 495–500 (1993).

    Article  CAS  Google Scholar 

  29. Berhane, K., Widersten, M., Engstrom, A., Kozarich, J.W. & Mannervik, B. Detoxication of base propenals and other α, beta-unsaturated aldehyde products of radical reactions and lipid peroxidation by human glutathione transferases. Proc. Natl. Acad. Sci. USA 91, 1480–1484 (1994).

    Article  CAS  Google Scholar 

  30. Shea, T.C., Kelley, S.L. & Henner, W.D. Identification of an anionic form of glutathione transferase present in many human tumors and human tumor cell lines. Cancer Res. 48, 527–533 (1988).

    CAS  PubMed  Google Scholar 

  31. Sato, K. Glutathione transferases as markers of preneoplasia and neoplasia. Adv. Cancer Res. 52, 205–255 (1989).

    Article  CAS  Google Scholar 

  32. Cuozzo, J.W. & Kaiser, C.A. Competition between glutathione and protein thiols for disulphide-bond formation. Nature Cell Biol. 1, 130–135 (1999).

    Article  CAS  Google Scholar 

  33. Frand, A.R., Cuozzo, J.W. & Kaiser, C.A. Pathways for protein disulphide bond formation. Trends Cell Biol. 10, 203–210 (2000).

    Article  CAS  Google Scholar 

  34. Wong, J.C.Y., Alon, N. & Buchwald, M. Cloning of the bovine and rat Fanconi anemia group C cDNA. Mamm. Genome 8, 522–525 (1997).

    Article  CAS  Google Scholar 

  35. Lay, A.J. et al. Phosphoglycerate kinase acts in tumour angiogenesis as a disulphide reductase. Nature 408, 869–873 (2000).

    Article  CAS  Google Scholar 

  36. Joenje, H., Arwert, F., Eriksson, A.W., de Koning, H. & Oostra, A.B. Oxygen-dependence of chromosomal aberrations in Fanconi's anaemia. Nature 290, 142–143 (1981).

    Article  CAS  Google Scholar 

  37. Ruppitsch, W., Meisslitzer, C., Hirsch-Kauffmann, M. & Schweiger, M. Overexpression of thioredoxin in Fanconi anemia fibroblasts prevents the cytotoxic and DNA damaging effect of mitomycin C and diepoxybutane. FEBS Lett. 422, 99–102 (1998).

    Article  CAS  Google Scholar 

  38. Herzenberg, L.A. et al. Glutathione deficiency is associated with impaired survival in HIV disease. Proc. Natl. Acad. Sci. USA 94, 1967–1972 (1997).

    Article  CAS  Google Scholar 

  39. Adler, V., Yin, Z., Tew, K.D. & Ronai, Z. Role of redox potential and reactive oxygen species in stress signaling. Oncogene 18, 6104–6111 (1999).

    Article  CAS  Google Scholar 

  40. Wilhelm, D., Bender, K., Knebel, A. & Angel, P. The level of intracellular glutathione is a key regulator for the induction of stress-activated signal transduction pathways including Jun N-terminal protein kinases and p38 kinase by alkylating agents. Mol. Cell Biol. 17, 4792–4800 (1997).

    Article  CAS  Google Scholar 

  41. Adler, V. et al. Regulation of JNK signaling by GSTp. EMBO J. 18, 1321–1334 (1999).

    Article  CAS  Google Scholar 

  42. Yin, Z., Ivanov, V.N., Habelhah, H., Tew, K. & Ronai, Z. Glutathione S-transferase p elicits protection against H2O2-induced cell death via coordinated regulation of stress kinases. Cancer Res. 60, 4053–4057 (2000).

    CAS  PubMed  Google Scholar 

  43. Rothe, M., Pan, M.G., Henzel, W.J., Ayres, T.M. & Goeddel, D.V. The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 83, 1243–1252 (1995).

    Article  CAS  Google Scholar 

  44. Habig, W.H., Pabst, M.J. & Jakoby, W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130–7139 (1974).

    CAS  PubMed  Google Scholar 

  45. Reed, D.J. et al. High-performance liquid chromatography analysis of nanomole levels of glutathione, glutathione disulfide, and related thiols and disulfides. Anal Biochem 106, 55–62 (1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Liu for providing the FANCC retroviral vector, G. Boulianne for comments on the manuscript and D. Riddick for technical advice. This research was supported by the Canadian Institutes of Health Research, the National Institutes of Health (HL52138) and the Burroughs Wellcome Clinical Scientist Award (to H.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Buchwald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cumming, R., Lightfoot, J., Beard, K. et al. Fanconi anemia group C protein prevents apoptosis in hematopoietic cells through redox regulation of GSTP1. Nat Med 7, 814–820 (2001). https://doi.org/10.1038/89937

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89937

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing