Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Retrotransposons as epigenetic mediators of phenotypic variation in mammals

Abstract

Phenotypic variation in mammals is frequently attributed to the action of quantitative trait loci (QTL) or the environment, but may also be epigenetic in origin. Here we consider a mechanism for phenotypic variation based on interference of transcription by somatically active retrotransposons. Transcriptionally competent retrotransposons may number in the tens of thousands in mammalian genomes. We propose that silencing of retrotransposons occurs by cosuppression during early embryogenesis, but that this process is imperfect and produces a mosaic pattern of retrotransposon expression in somatic cells. Transcriptional interference by active retrotransposons perturbs expression of neighboring genes in somatic cells, in a mosaic pattern corresponding to activity of each retrotransposon. The epigenotype of retrotransposon activity is reset in each generation, but incomplete resetting can lead to heritable epigenetic effects. The stochastic nature of retrotransposon activity, and the very large number of genes that may be affected, produce subtle phenotypic variations even between genetically identical individuals, which may affect disease risk and be heritable in a non-mendelian fashion.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Variable expressivity in the absence of genetic diversity: isogenic viable yellow agouti (Avy) mice display a range of phenotypes5,20,21.
Figure 2: Transcriptional interference.
Figure 3: Resetting of the epigenotype in early embryogenesis.
Figure 4: Schematic pedigrees illustrating epigenetic variation and inheritance.

References

  1. Risch, N.J. Searching for genetic determinants in the new millennium. Nature 405, 847–856 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Falconer, D.S. Introduction to Quantitative Genetics 438 (Longman Scientific & Technical, Essex, 1989).

    Google Scholar 

  3. Gartner, K. A third component causing random variability beside environment and genotype. A reason for the limited success of a 30 year long effort to standardize laboratory animals? Lab. Anim. 24, 71–77 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Gruneberg, H. Is there a viral component in the genetic background? Nature 225, 39–41 (1970).

    Article  CAS  PubMed  Google Scholar 

  5. Perry, W.L., Copeland, N.G. & Jenkins, N.A. The molecular basis for dominant yellow agouti coat color mutations. Bioessays 16, 705–707 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Vasicek, T.J. et al. Two dominant mutations in the mouse fused gene are the result of transposon insertions. Genetics 147, 777–786 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hummel, K.P. The inheritance and expression of disorganization, an unusual mutation in the mouse. J. Exp. Zool. 137, 389–423 (1958).

    Article  CAS  PubMed  Google Scholar 

  8. Essien, F.B., Haviland, M.B. & Naidoff, A.E. Expression of a new mutation (Axd) causing axial defects in mice correlates with maternal phenotype and age. Teratology 42, 183–194 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Machin, G.A. Some causes of genotypic and phenotypic discordance in monozygotic twin pairs. Am. J. Med. Genet. 61, 216–228 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Martin, N., Boomsma, D. & Machin, G. A twin-pronged attack on complex traits. Nature Genet. 17, 387–392 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Bouchard, T.J., Jr., Lykken, D.T., McGue, M., Segal, N.L. & Tellegen, A. Sources of human psychological differences: the Minnesota Study of Twins Reared Apart. Science 250, 223–228 (1990).

    Article  PubMed  Google Scholar 

  12. Gartner, K. & Baunack, E. Is the similarity of monozygotic twins due to genetic factors alone? Nature 292, 646–647 (1981).

    Article  CAS  PubMed  Google Scholar 

  13. Jablonka, E. & Lamb, M.J. Epigenetic Inheritance and Evolution: The Lamarckian Dimension 346 (Oxford University Press, Oxford, 1995).

    Google Scholar 

  14. Holliday, R. The inheritance of epigenetic defects. Science 238, 163–170 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Wolffe, A.P. & Matzke, M.A. Epigenetics: regulation through repression. Science 286, 481–486 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Martienssen, R.A. & Richards, E.J. DNA methylation in eukaryotes. Curr. Opin. Genet. Dev. 5, 234–242 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Cavalli, G. & Paro, R. The Drosophila Fab-7 chromosomal element conveys epigenetic inheritance during mitosis and meiosis. Cell 93, 505–518 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Grewal, S.I. & Klar, A.J. Chromosomal inheritance of epigenetic states in fission yeast during mitosis and meiosis. Cell 86, 95–101 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Hollick, J.B., Dorweiler, J.E. & Chandler, V.L. Paramutation and related allelic interactions. Trends Genet. 13, 302–308 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Morgan, H.D., Sutherland, H.G., Martin, D.I. & Whitelaw, E. Epigenetic inheritance at the agouti locus in the mouse. Nature Genet. 23, 314–318 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Michaud, E.J. et al. Differential expression of a new dominant agouti allele (Aiapy) is correlated with methylation state and is influenced by parental lineage. Genes Dev. 8, 1463–1472 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Smit, A.F. Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr. Opin. Genet. Dev. 9, 657–663 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. SanMiguel, P., Gaut, B.S., Tikhonov, A., Nakajima, Y. & Bennetzen, J.L. The paleontology of intergene retrotransposons of maize. Nature Genet. 20, 43–45 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Wilkinson, D.A., Mager, D.L. & Leong, J.C. Endogenous human retroviruses. in The Retroviridae (ed. Levy, J.A.) 465–535 (Plenum, New York, 1994).

    Chapter  Google Scholar 

  25. Kazazian, H.H., Jr. Mobile elements and disease. Curr. Opin. Genet. Dev. 8, 343–350 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Fincham, J.R. & Sastry, G.R. Controlling elements in maize. Annu. Rev. Genet. 8, 15–50 (1974).

    Article  CAS  PubMed  Google Scholar 

  27. Kidwell, M.G. & Lisch, D. Transposable elements as sources of variation in animals and plants. Proc. Natl. Acad. Sci. USA 94, 7704–7711 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Emerman, M. & Temin, H.M. Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell 39, 449–467 (1984).

    Article  CAS  PubMed  Google Scholar 

  29. Corbin, V. & Maniatis, T. Role of transcriptional interference in the Drosophila melanogaster Adh promoter switch. Nature 337, 279–282 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. Proudfoot, N.J. Transcriptional interference and termination between duplicated α-globin gene constructs suggests a novel mechanism for gene regulation. Nature 322, 562–565 (1986).

    Article  CAS  PubMed  Google Scholar 

  31. Parkhurst, S.M. & Corces, V.G. Interactions among the gypsy transposable element and the yellow and the suppressor of hairy-wing loci in Drosophila melanogaster. Mol. Cell. Biol. 6, 47–53 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Olson, E.N., Arnold, H.H., Rigby, P.W. & Wold, B.J. Know your neighbors: three phenotypes in null mutants of the myogenic bHLH gene MRF4. Cell 85, 1–4 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Fiering, S. et al. Targeted deletion of 5′HS2 of the murine β-globin LCR reveals that it is not essential for proper regulation of the β-globin locus. Genes Dev. 9, 2203–2213 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Mohn, A.R., Gainetdinov, R.R., Caron, M.G. & Koller, B.H. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98, 427–436 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. McClintock, B. The states of a gene locus in maize. Carnegie Institute of Washington Yearbook 66, 20–28 (1968).

    Google Scholar 

  36. Martienssen, R. & Baron, A. Coordinate suppression of mutations caused by Robertson's mutator transposons in maize. Genetics 136, 1157–1170 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Speek, M. Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol. Cell. Biol. 21, 1973–1985 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Krieg, A.M., Gourley, M.F. & Perl, A. Endogenous retroviruses: potential etiologic agents in autoimmunity. FASEB J. 6, 2537–2544 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Roemer, I., Reik, W., Dean, W. & Klose, J. Epigenetic inheritance in the mouse. Curr. Biol. 7, 277–280 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Yoder, J.A., Walsh, C.P. & Bestor, T.H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13, 335–340 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Monk, M., Boubelik, M. & Lehnert, S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99, 371–382 (1987).

    CAS  PubMed  Google Scholar 

  42. Kafri, T. et al. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev. 6, 705–714 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Piko, L., Hammons, M.D. & Taylor, K.D. Amounts, synthesis, and some properties of intracisternal A particle-related RNA in early mouse embryos. Proc. Natl. Acad. Sci. USA 81, 488–492 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Packer, A.I., Manova, K. & Bachvarova, R.F. A discrete LINE-1 transcript in mouse blastocysts. Dev. Biol. 157, 281–283 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Fire, A. RNA-triggered gene silencing. Trends Genet. 15, 358–363 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Jones, L. et al. RNA-DNA interactions and DNA methylation in post-transcriptional gene silencing. Plant Cell 11, 2291–2302 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123–132 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Ketting, R.F. & Plasterk, R.H. A genetic link between co-suppression and RNA interference in C. elegans. Nature 404, 296–298 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Chaboissier, M.C., Bucheton, A. & Finnegan, D.J. Copy number control of a transposable element, the I factor, a LINE-like element in Drosophila. Proc. Natl. Acad. Sci. USA 95, 11781–11785 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jensen, S., Gassama, M.P. & Heidmann, T. Taming of transposable elements by homology-dependent gene silencing. Nature Genet. 21, 209–212 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Baylin, S.B. & Herman, J.G. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 16, 168–174 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Lyle, R. et al. The imprinted antisense RNA at the Igf2r locus overlaps but does not imprint Mas1. Nature Genet. 25, 19–21 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Stöger, H. Morgan, B. Graham, G. Thomson, M. Kappelman and J. Cropley for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David I.K. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitelaw, E., Martin, D. Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat Genet 27, 361–365 (2001). https://doi.org/10.1038/86850

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/86850

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing