Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-κB signaling

Abstract

The molecular basis of X-linked recessive anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) has remained elusive. Here we report hypomorphic mutations in the gene IKBKG in 12 males with EDA-ID from 8 kindreds, and 2 patients with a related and hitherto unrecognized syndrome of EDA-ID with osteopetrosis and lymphoedema (OL-EDA-ID). Mutations in the coding region of IKBKG are associated with EDA-ID, and stop codon mutations, with OL-EDA-ID. IKBKG encodes NEMO, the regulatory subunit of the IKK (IκB kinase) complex, which is essential for NF-κB signaling. Germline loss-of-function mutations in IKBKG are lethal in male fetuses. We show that IKBKG mutations causing OL-EDA-ID and EDA-ID impair but do not abolish NF-κB signaling. We also show that the ectodysplasin receptor, DL, triggers NF-κB through the NEMO protein, indicating that EDA results from impaired NF-κB signaling. Finally, we show that abnormal immunity in OL-EDA-ID patients results from impaired cell responses to lipopolysaccharide, interleukin (IL)-1β, IL-18, TNFα and CD154. We thus report for the first time that impaired but not abolished NF-κB signaling in humans results in two related syndromes that associate specific developmental and immunological defects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IKBKG mutations associated with OL-EDA-ID and EDA-ID.
Figure 2: NEMO X420W mutation results in impaired, but not abolished, NF-κB activation.
Figure 3: NF-κB is an effector of the ectodysplasin/DL developmental pathway.
Figure 4: Impaired response of PBMC to IL-1β, IL-18 and lipopolysaccharide.
Figure 5: Dissociated cellular responses of B cells and dendritic cells to CD154.

Similar content being viewed by others

References

  1. Pinheiro, M. & Freire-Maia, N. Ectodermal dysplasias: a clinical classification and a causal review. Am. J. Med. Genet. 53, 153–162 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Kere, J. et al. X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. Nature Genet. 13, 409–416 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Ezer, S., Bayes, M., Elomaa, O., Schlessinger, D. & Kere, J. Ectodysplasin is a collagenous trimeric type II membrane protein with a tumor necrosis factor-like domain and co-localizes with cytoskeletal structures at lateral and apical surfaces of cells. Hum. Mol. Genet. 8, 2079–2086 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Monreal, A.W. et al. Mutations in the human homologue of mouse dl cause autosomal recessive and dominant hypohidrotic ectodermal dysplasia. Nature Genet. 22, 366–369 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Frix, C.D.d. & Bronson, D.M. Acute miliary tuberculosis in a child with anhidrotic ectodermal dysplasia. Pediatr. Dermatol. 3, 464–467 (1986).

    Article  PubMed  Google Scholar 

  6. Sitton, J.E. & Reimund, E.L. Extramedullary hematopoiesis of the cranial dura and anhidrotic ectodermal dysplasia. Neuropediatrics 23, 108–110 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Abinun, M., Spickett, G., Appleton, A.L., Flood, T. & Cant, A.J. Anhidrotic ectodermal dysplasia associated with specific antibody deficiency. Eur. J. Pediatr. 155, 146–147 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Schweizer, P., Kalhoff, H., Horneff, G., Wahn, V. & Diekmann, L. Polysaccharide specific humoral immunodeficiency in ectodermal dysplasia. Case report of a boy with two affected brothers. Klin. Padiatr. 211, 459–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Brooks, E.G. et al. Thymic hypoplasia and T-cell deficiency in ectodermal dysplasia: case report and review of the literature. Clin. Immunol. Immunopathol. 71, 44–52 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Jhaveri, M., Barnett, S.H., Gertner, M., Rho, Y.M. & Segen, J.C. Ectrodactyly, ectodermal dysplasia, and clefting associated with thymic aplasia. Am. J. Dis. Child. 143, 12 (1989).

    CAS  PubMed  Google Scholar 

  11. IUIS. Primary immunodeficiency diseases. Report of an IUIS Scientific Committee. International Union of Immunological Societies. Clin. Exp. Immunol. 118, 1–28 (1999).

  12. Masse, J.F. & Perusse, R. Ectodermal dysplasia. Arch. Dis. Child. 71, 1–2 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abinun, M. Ectodermal dysplasia and immunodeficiency. Arch. Dis. Child. 73, 185 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McKusick, V.A. Mendelian Inheritance in Man. Catalogs of Human Genes and Genetic Disorders (Johns Hopkins University Press, Baltimore, 1998).

    Google Scholar 

  15. Smahi, A. et al. Genomic rearrangement in NEMO impairs NF-κB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature 405, 466–472 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Francis, J.S. & Sybert, V.P. Incontinentia pigmenti. Semin. Cutan. Med. Surg. 16, 54–60 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Yamaoka, S. et al. Complementation cloning of NEMO, a component of the IκB kinase complex essential for NF-κB activation. Cell 93, 1231–1240 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Rothwarf, D.M., Zandi, E., Natoli, G. & Karin, M. IKK-γ is an essential regulatory subunit of the IκB kinase complex. Nature 395, 297–300 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Israel, A. The IKK complex: an integrator of all signals that activate NF-κB? Trends Cell Biol. 10, 129–133 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Rudolph, D. et al. Severe liver degeneration and lack of NF-κB activation in NEMO/IKKγ-deficient mice. Genes Dev. 14, 854–862 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Schmidt-Supprian, M. et al. NEMO/IKK γ-deficient mice model incontinentia pigmenti. Mol. Cell 5, 981–992 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Makris, C. et al. Female mice heterozygous for IKK γ/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol. Cell 5, 969–979 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Courtois, G., Whiteside, S.T., Sibley, C.H. & Israel, A. Characterization of a mutant cell line that does not activate NF-κB in response to multiple stimuli. Mol. Cell. Biol. 17, 1441–1449 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Headon, D.J. & Overbeek, P.A. Involvement of a novel TNF receptor homologue in hair follicle induction. Nature Genet. 22, 370–374 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. O'Neill, L.A. & Dinarello, C.A. The IL-1 receptor/toll-like receptor superfamily: crucial receptors for inflammation and host defense. Immunol. Today 21, 206–209 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Tominaga, K. et al. IL-12 synergizes with IL-18 or IL-1β for IFN-γ production from human T cells. Int. Immunol. 12, 151–160 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Goldfeld, A.E., Doyle, C. & Maniatis, T. Human tumor necrosis factor α gene regulation by virus and lipopolysaccharide. Proc. Natl. Acad. Sci. USA 87, 9769–9773 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Poltorak, A. et al. Genetic and physical mapping of the Lps locus: identification of the toll-4 receptor as a candidate gene in the critical region. Blood Cells Mol. Dis. 24, 340–355 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. van Kooten, C. & Banchereau, J. CD40-CD40 ligand. J. Leukoc. Biol. 67, 2–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Lane, P. et al. Activated human T cells express a ligand for the human B cell-associated antigen CD40 which participates in T cell-dependent activation of B lymphocytes. Eur. J. Immunol. 22, 2573–2578 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Berberich, I., Shu, G.L. & Clark, E.A. Cross-linking CD40 on B cells rapidly activates nuclear factor-κB. J. Immunol. 153, 4357–4366 (1994).

    CAS  PubMed  Google Scholar 

  33. Cella, M. et al. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J. Exp. Med. 184, 747–752 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Zonana, J. Hypohidrotic (anhidrotic) ectodermal dysplasia: molecular genetic research and its clinical applications. Semin. Dermatol. 12, 241–246 (1993).

    CAS  PubMed  Google Scholar 

  35. Franzoso, G. et al. Requirement for NF-κB in osteoclast and B-cell development. Genes Dev. 11, 3482–3496 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hsu, H. et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc. Natl. Acad. Sci. USA 96, 3540–3545 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dougall, W.C. et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 13, 2412–2424 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Karkkainen, M.J. et al. Missense mutations interfere with VEGFR-3 signaling in primary lymphoedema. Nature Genet. 25, 153–159 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Medzhitov, R. & Janeway, C., Jr. Innate immunity. N. Engl. J. Med. 343, 338–344 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Kuhns, D.B., Long Priel, D.A. & Gallin, J.I. Endotoxin and IL-1 hyporesponsiveness in a patient with recurrent bacterial infections. J. Immunol. 158, 3959–3964 (1997).

    CAS  PubMed  Google Scholar 

  41. Hoshino, K. et al. Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162, 3749–3752 (1999).

    CAS  PubMed  Google Scholar 

  42. Levy, J. et al. Clinical spectrum of X-linked hyper-IgM syndrome. J. Pediatr. 131, 47–54 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443–451 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Yoshimura, A. et al. Recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol. 163, 1–5 (1999).

    CAS  PubMed  Google Scholar 

  45. Jouanguy, E. et al. IL-12 and IFN-γ in host defense against mycobacteria and Salmonella in mice and men. Curr. Opin. Immunol. 11, 346–351 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Means, T.K. et al. Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J. Immunol. 163, 3920–3927 (1999).

    CAS  PubMed  Google Scholar 

  47. Underhill, D.M., Ozinsky, A., Smith, K.D. & Aderem, A. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc. Natl. Acad. Sci. USA 96, 14459–14463 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zonana, J. et al. A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-γ (NEMO). Am. J. Hum. Genet. 67, 1555–1562 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kumar, A., Eby, M.T., Sinha, S., Jasmin, A. & Chaudhary, P.M. Ectodermal dysplasia receptor activates the nuclear factor κ B, c-Jun N-terminal kinase and cell death pathways and binds to ectodysplasmin A. J. Biol. Chem. 276, 2668–2677 (2000).

    Article  PubMed  Google Scholar 

  50. Yan, M. et al. Two-amino acid molecular switch in an epithelial morphogen that regulates binding to two distinct receptors. Science 290, 523–527 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Darocca, G. Barcenas-Döffinger, M. Feinberg, P. Revy, G. de Saint Basile, P. Darbyshire, C. Moss and J. Clarke. J.-L.C. thanks J.-C. Weill for encouragement and support. This work was supported by grants from Faculté Necker, Université de Paris René Descartes, Fondation Schlumberger, Fondation Jean Valade, Legs Poix, FRM, Fondation BNP-Parisbas, PNRFMMIP, Institut Universitaire de France, National Incontinentia Pigmenti Foundation, Action Incitative Blanche and INSERM U550 to J.-L.C.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gilles Courtois or Jean-Laurent Casanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Döffinger, R., Smahi, A., Bessia, C. et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-κB signaling. Nat Genet 27, 277–285 (2001). https://doi.org/10.1038/85837

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85837

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing