Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recombinational DNA double-strand breaks in mice precede synapsis

Abstract

In Saccharomyces cerevisiae, meiotic recombination is initiated by Spo11-dependent double-strand breaks (DSBs), a process that precedes homologous synapsis. Here we use an antibody specific for a phosphorylated histone (γ-H2AX, which marks the sites of DSBs) to investigate the timing, distribution and Spo11-dependence of meiotic DSBs in the mouse. We show that, as in yeast, recombination in the mouse is initiated by Spo11-dependent DSBs that form during leptotene. Loss of γ-H2AX staining (which in irradiated somatic cells is temporally linked with DSB repair) is temporally and spatially correlated with synapsis, even when this synapsis is 'non-homologous'.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of γ-H2AX in the testis.
Figure 2: Expression of γ-H2AX during XY male meiosis.
Figure 3: Expression of γ-H2AX in spermatogenic cells from Spo11−/− and Msh5−/− mice.
Figure 4: Karyotype (ac) and expression of γ-H2AX (df) in T(1;13)70H/T(1;13)Wa double translocation heterozygotes.
Figure 5: The relationship between γ-H2AX domains, axial elements and DMC1 foci during leptotene and zygotene.

Similar content being viewed by others

References

  1. Roeder, G.S. Meiotic chromosomes: it takes two to tango. Genes Dev. 11, 2600–2621 (1997).

    Article  CAS  Google Scholar 

  2. Baker, S.M. et al. Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell 82, 309–319 (1995).

    Article  CAS  Google Scholar 

  3. Pittman, D.L. et al. Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific recA homolog. Mol. Cell 1, 697–705 (1998).

    Article  CAS  Google Scholar 

  4. Yoshida, K. et al. The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis. Mol. Cell 1, 707–718 (1998).

    Article  CAS  Google Scholar 

  5. Edelmann, W. et al. Mammalian MutS homologue 5 is required for chromosome pairing in meiosis. Nature Genet. 21, 123–127 (1999).

    Article  CAS  Google Scholar 

  6. de Vries, S.S. et al. Mouse MutS-like protein MSH5 is required for proper chromosome synapsis in male and female meiosis. Genes Dev. 13, 523–531 (1999).

    Article  CAS  Google Scholar 

  7. Kneitz, P. et al. MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev. 14, 1085–1087 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rogakou, E.P., Boon, C., Redon, C. & Bonner, W.M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905–915 (1999).

    Article  CAS  Google Scholar 

  9. Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S. & Bonner, W.M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998).

    Article  CAS  Google Scholar 

  10. Page, J., Suja, J.A., Santos, J.L. & Rufas, J.S. Squash procedure for protein immunolocalization in meiotic cells. Chromosome Res. 6, 639–642 (1998).

    Article  CAS  Google Scholar 

  11. Calenda, A., Allenet, B., Escalier, D., Bach, J.-F. & Garchon, H.-J. The meiosis-specific Xmr gene product is homologous to the lymphocyte Xlr protein and is a component of the XY body. EMBO J. 13, 100–109 (1994).

    Article  CAS  Google Scholar 

  12. Lammers, J.H.M. et al. The gene encoding a major component of synaptonemal complexes of rat is related to X-linked lymphocyte-regulated genes. Mol. Cell. Biol. 14, 1137–1146 (1994).

    Article  CAS  Google Scholar 

  13. Meuwissen, R.L.J. et al. A coiled-coil related protein specific for synapsed regions of meiotic prophase chromosomes. EMBO J. 11, 5091–5100 (1992).

    Article  CAS  Google Scholar 

  14. Peters, A.H., Plug, A.W., van Vugt, M.J. & de Boer, P. A drying-down technique for the spreading of mammalian meiocytes from the male and female germ line. Chromosome Res. 5, 66–68 (1997).

    Article  CAS  Google Scholar 

  15. Dobson, M., Pearlman, R.E., Karaiskakis, A. & Spyropoulos, B. Synaptonemal complex proteins: occurrence, epitope mapping and chromosome disjunction. J. Cell Sci. 107, 2749–2760 (1994).

    CAS  PubMed  Google Scholar 

  16. Plug, A.W., Xu, J., Reddy, G., Golub, E.I. & Ashley, T. Presynaptic association of Rad51 protein with selected sites in meiotic chromatin. Proc. Natl Acad. Sci. USA 93, 5920–5924 (1996).

    Article  CAS  Google Scholar 

  17. Keeney, S., Giroux, C.N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375–384 (1997).

    Article  CAS  Google Scholar 

  18. Baudat, F., Manova, K., Yuen, J.P., Jasin, M. & Keeney, S. Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol. Cell 6, 989–998 (2000).

    Article  CAS  Google Scholar 

  19. Romanienko, P.J. & Camerini-Otero, R.D. The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol. Cell 6, 975–987 (2000).

    Article  CAS  Google Scholar 

  20. Peters, A.H., Plug, A.W. & de Boer, P. Meiosis in carriers of heteromorphic bivalents: sex diferences and implications for male fertility. Chromosome Res. 5, 313–324 (1997).

    Article  CAS  Google Scholar 

  21. Moses, M.J. & Poorman, P.A. Synaptonemal complex analysis of mouse chromosomal rearrangements. II. Synaptic adjustment in a tandem duplication. Chromosoma 81, 519–535 (1981).

    Article  CAS  Google Scholar 

  22. Barlow, A.L., Benson, F.E., West, S.C. & Hultén, M.A. Distribution of the RAD51 recombinase in human and mouse spermatocytes. EMBO J. 16, 5207–5215 (1997).

    Article  CAS  Google Scholar 

  23. Moens, P.B. et al. Rad51 immunocytology in rat and mouse spermatocytes and oocytes. Chromosoma 106, 207–215 (1997).

    Article  CAS  Google Scholar 

  24. Tarsounas, M., Morita, T., Pearlman, R.E. & Moens, P.B. RAD51 and DMC1 form mixed complexes associated with mouse meiotic chromosome cores and synaptonemal complexes. J. Cell Biol. 147, 207–219 (1999).

    Article  CAS  Google Scholar 

  25. McKim, K.S. et al. Meiotic synapsis in the absence of recombination. Science 279, 876–878 (1998).

    Article  CAS  Google Scholar 

  26. Dernburg, A.F. et al. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94, 387–398 (1998).

    Article  CAS  Google Scholar 

  27. Ashley, T. An integration of old and new perspectives of mammalian meiotic sterility. in Results and Problems in Cell Differentiation (ed. McElreavey, K.) 131–173 (Springer, Berlin, 2000).

    Google Scholar 

  28. Eijpe, M., Offenberg, H., Goedecke, W. & Heyting, C. Localisation of RAD50 and MRE11 in spermatocyte nuclei of mouse and rat. Chromosoma 109, 123–132 (2000).

    Article  CAS  Google Scholar 

  29. Raderschall, E., Golub, E.I. & Haaf, T. Nuclear foci of mammalian recombination proteins are located at single-stranded DNA regions formed after DNA damage. Proc. Natl. Acad. Sci. USA 96, 1921–1926 (1999).

    Article  CAS  Google Scholar 

  30. Gasior, S.L., Wong, A.K., Kora, Y., Shinohara, A. & Bishop, D.K. Rad52 associates with RPA and functions with rad55 and rad57 to assemble recombination complexes. Genes Dev. 12, 2208–2221 (1998).

    Article  CAS  Google Scholar 

  31. Mahadevaiah, S.K., Setterfield, L.A. & Mittwoch, U. Univalent sex chromosomes in spermatocytes of Sxr-carrying mice. Chromosoma 97, 145–153 (1988).

    Article  CAS  Google Scholar 

  32. Plug, A.W. et al. Changes in protein composition of meiotic nodules during mammalian meiosis. J. Cell Sci. 111, 413–423 (1998).

    CAS  PubMed  Google Scholar 

  33. McKee, B.D. & Handel, M.A. Sex chromosomes, recombination, and chromatin conformation. Chromosoma 102, 71–80 (1993).

    Article  CAS  Google Scholar 

  34. Alsheimer, M. & Benavente, R. Changes of karyoskeleton during mammalian spermatogenesis: expression pattern of nuclear lamin C2 and its regulation. Exp. Cell Res. 228, 181–188 (1996).

    Article  CAS  Google Scholar 

  35. Earnshaw, W.C. & Rothfield, N. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91, 313–321 (1985).

    Article  CAS  Google Scholar 

  36. Escalier, D. & Garchon, H.-J. XMR is associated with the asynapsed segments of sex chromosomes in the XY body of mouse primary spermatocytes. Chromosoma 109, 259–265 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H.-J. Garchon for the anti-XLR antibody; P. Moens and B. Spyropoulos for the anti-COR1 and anti-SYN1 antibodies; A. Davies, J.-Y. Masson and S. West for the anti-DMC1 antibody; R. Benavente for the anti-SCP3 antibody; W. Earnshaw for the CREST antibody; H. te Riele for providing Msh5−/− mice; S. Pagakis for help with imaging; and Á. Rattigan and O. Ojarikre for help with mouse genotyping and breeding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Burgoyne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahadevaiah, S., Turner, J., Baudat, F. et al. Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet 27, 271–276 (2001). https://doi.org/10.1038/85830

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85830

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing