Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus

An Erratum to this article was published on 01 December 2000

Abstract

Type 2 or non-insulin-dependent diabetes mellitus (NIDDM) is the most common form of diabetes worldwide, affecting approximately 4% of the world's adult population. It is multifactorial in origin with both genetic and environmental factors contributing to its development. A genome-wide screen for type 2 diabetes genes carried out in Mexican Americans localized a susceptibility gene, designated NIDDM1, to chromosome 2. Here we describe the positional cloning of a gene located in the NIDDM1 region that shows association with type 2 diabetes in Mexican Americans and a Northern European population from the Botnia region of Finland. This putative diabetes-susceptibility gene encodes a ubiquitously expressed member of the calpain-like cysteine protease family, calpain-10 (CAPN10). This finding suggests a novel pathway that may contribute to the development of type 2 diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physical map of the NIDDM1 region.
Figure 2: Organization of the NIDDM1 region.
Figure 3: Tissue distribution of human CAPN10 mRNA.
Figure 4: Predicted amino acid sequence of human calpain-10a.
Figure 5: Alternative splicing of CAPN10 mRNA generates a family of proteins.
Figure 6: Binding of nuclear factors to CAPN10 intron 3.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. The Expert Committee on the Diagnosis and Classification of Diabetes ellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 20, 1183–1197 (1997).

  2. King, H., Aubert, R.E. & Herman, W.H. Global burden of diabetes, 1995–2025. Diabetes Care 21, 1414–1431 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Steiner, D.F., Tager, H.S., Nanjo, K., Chan, S.J. & Rubenstein, A.H. Familial syndromes of hyperproinsulinemia and hyperinsulinemia with mild diabetes. in The Metabolic and Molecular Bases of Inherited Disease (eds Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.) 897–904 (McGraw-Hill, New York, 1995).

    Google Scholar 

  4. Taylor, S.I. Diabetes mellitus. in The Metabolic and Molecular Bases of Inherited Disease (eds Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.) 843–896 (McGraw-Hill, New York, 1995).

    Google Scholar 

  5. Vionnet, N. et al. Nonsense mutation in the glucokinase gene causes early-onset non-insulin-dependent diabetes mellitus. Nature 356, 721–722 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Yamagata, K. et al. Mutations in the hepatocyte nuclear factor-1α gene in maturity-onset diabetes of the young (MODY3). Nature 384, 455–458 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Horikawa, Y. et al. Mutation in hepatocyte nuclear factor-1β gene (TCF2) associated with MODY. Nature Genet. 17, 384–385 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Yamagata, K. et al. Mutations in the hepatocyte nuclear factor-4α gene in maturity-onset diabetes of the young (MODY1). Nature 384, 458–460 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Stoffers, D.A., Ferrer, J., Clarke, W.L. & Habener, J.F. Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nature Genet. 17, 138–139 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Malecki, M.T. et al. Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nature Genet. 23, 323–328 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Maassen, J.A. & Kadowaki, T. Maternally inherited diabetes and deafness: a new diabetes subtype. Diabetologia 39, 375–382 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Concannon, P. et al. A second-generation screen of the human genome for susceptibility to insulin-dependent diabetes mellitus. Nature Genet. 19, 292–296 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Hanis, C.L. et al. A genome-wide search for human non-insulin-dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2. Nature Genet. 13, 161–166 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Duggirala, R. et al. Linkage of type 2 diabetes mellitus and age at onset to a location on chromosome 10q in Mexican Americans. Am. J. Hum. Genet. 64, 1127–1140 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mahtani, M.M. et al. Mapping of a gene for type 2 diabetes associated with an insulin secretion defect by a genome scan in Finnish families. Nature Genet. 14, 90–94 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Hanson, R.L. et al. An autosomal genomic scan for loci linked to type II diabetes mellitus and body-mass index in Pima Indians. Am. J. Hum. Genet. 63, 1130–1138 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Elbein, S.C., Hoffman, M.D., Teng, K., Leppert, M.F. & Hasstedt, S.J. A genome-wide search for type 2 diabetes susceptibility genes in Utah Caucasians. Diabetes 48, 1175–1182 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Hani, E.H. et al. Mapping NIDDM susceptibility loci in French families: studies with markers in the region of NIDDM1 on chromosome 2q. Diabetes 46, 1225–1226 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Thomas, A.W. et al. Genetic linkage study of a major susceptibility locus (D2S125) in a British population of non-insulin dependent diabetic sib-pairs using a simple non-isotopic screening method. Hum. Genet. 101, 212–213 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Ciccarese, M. et al. Preliminary data on a genome search in NIDDM siblings: the NIDDM1 locus on chromosome 2 is not linked to NIDDM in the Sardinian population. Diabetologia 40, 1366–1367 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Ghosh, S. et al. A large sample of Finnish diabetic sib-pairs reveals no evidence for a non-insulin-dependent diabetes mellitus susceptibility locus at 2qter. J. Clin. Invest. 102, 704–709 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cox, N.J. et al. Loci on chromosomes 2 (NIDDM1) and 15 interact to increase susceptibility to diabetes in Mexican Americans. Nature Genet. 21, 213–215 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Broman, K.W., Murray, J.C., Sheffield, V.C., White, R.L. & Weber, J.L. Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am. J. Hum. Genet. 63, 861–869 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Braun, C., Engel, M., Theisinger, B., Welter, C. & Seifert, M. CAPN 8: Isolation of a new mouse calpain-isoenzyme. Biochem. Biophys. Res. Commun. 260, 671–675 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. O'Dowd, B.F. et al. Discovery of three novel G-protein coupled receptor genes. Genomics 47, 310–313 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Cadel, S. et al. Aminopeptidase B from the rat testis is a bifunctional enzyme structurally related to leukotriene-A4 hydrolase. Proc. Natl Acad. Sci. USA 94, 2963–2968 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Khoury, M.J., Beaty, T.H. & Cohen, B.H. Fundamentals of Genetic Epidemiology (Oxford University Press, New York, 1993).

    Google Scholar 

  28. Saido, T., Sorimachi, H. & Suzuki, K. Calpain: new perspectives in molecular diversity and physiological-pathological involvement. FASEB J. 8, 814–822 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Carafoli, E. & Molinari, M. Calpain: a protease in search of a function. Biochem. Biophys. Res. Commun. 247, 193–203 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Dear, N., Matena, K., Vingron, M. & Boehm, T. A new subfamily of vertebrate calpains lacking a calmodulin-like domain: implications for calpain regulation and evolution. Genomics 45, 175–184 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Patel, Y.M. & Lane, D.M. Role of calpain in adipocyte differentiation. Proc. Natl Acad. Sci. USA 96, 1279–1285 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Smith, L.K., Rice, K.M. & Garner, C.W. The insulin-induced down-regulation of IRS-1 in 3T3-L1 adipocytes is mediated by a calcium-dependent thiol protease. Mol. Cell. Endocrinol. 122, 81–92 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Richard, I. et al. Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 81, 27–40 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Barnes, T.M. & Hodgkin, J. The tra-3 sex determination gene of Caenorhabditis elegans encodes a member of the calpain regulatory protease family. EMBO J. 15, 4477–4484 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Delaney, S.J., Hayward, D.C., Barleben, F., Fischbach, K.-F. & Miklos, G.L.G. Molecular cloning and analysis of small optic lobes, a structural brain gene of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 88, 7214–7218 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blackwood, E.M. & Kadonaga, J.T. Going the distance: a current view of enhancer action. Science 281, 60–63 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Stam, L.F. & Laurie, C.C. Molecular dissection of a major gene effect on a quantitative trait: the level of alcohol dehydrogenase expression in Drosophila melanogaster. Genetics 144, 1559–1564 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Uitterlinden, A.G. et al. Relation of alleles of the collagen type Iα1 gene to bone density and the risk of osteoporotic fractures in postmenopausal women. N. Engl. J. Med. 338, 1016–1021 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Baier, L.J. et al. A calpain-10 gene polymorphism is associated with reduced muscle mRNA levels and insulin resistance. J. Clin. Invest. 106, R69–R73 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Naggert, J.K. et al. Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzymatic activity. Nature Genet. 10, 135–141 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Jackson, R.S. et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nature Genet. 16, 303–306 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Flexner, C. HIV-protease inhibitors. N. Engl. J. Med. 338, 1281–1292 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Hanis, C.L., Hewett-Emmett, D., Bertin, T.K. & Schull, W.J. Origins of U.S. Hispanics: implications for diabetes. Diabetes Care 41, 618–627 (1991).

    Article  Google Scholar 

  44. Groop, L. et al. Metabolic consequences of a family history of NIDDM (the Botnia study): evidence for sex-specific parental effects. Diabetes 45, 1585–1593 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. MacLean, C.J. & Morton, N.E. Estimation of myriad haplotype frequencies. Genet. Epidemiol. 2, 263–272 (1985).

    Article  CAS  PubMed  Google Scholar 

  46. Lewontin, R.C. The interaction of selection and linkage. I. General considerations: heterotic models. Genetics 49, 49–67 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Boehnke, M. & Cox, N.J. Accurate inference of relationships in sib-pair linkage studies. Am. J. Hum. Genet. 61, 423–429 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kruglyak, L., Daly, M.J., Reeve-Daly, M.P. & Lander, E.S. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am. J. Hum. Genet. 58, 1347–1363 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kong, A. & Cox, N.J. Allele-sharing models: LOD scores and accurate linkage tests. Am. J. Hum. Genet. 61, 1179–1188 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Andrews, N.C. & Faller, D.V. A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res. 11, 2499 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M.M. Le Beau for carrying out FISH analysis; A. Di Rienzo for sharing unpublished results of studies of the sequence of the NIDDM1 region in other racial and ethnic groups and in higher apes; M.S. McPeek and D.L. Nicolae for advice and assistance with the statistical analyses; A. Kong, B. Suarez, M. Boehnke and M. Lathrop for their comments on the manuscript; and E. Reyes-Gonzalez for providing the Zapoteca Indian samples. This work was supported by United States Public Health Service grants DK-20595, -42086, -47486, -47487, -47494 and -55889; the American Diabetes Association; the State of Texas; a grant from the Japanese Ministry of Health and Welfare for research on the human genome and gene therapy; an unrestricted grant for cardiovascular and metabolic research from Bristol-Myers Squibb; the Blum-Kovler Foundation; and the Howard Hughes Medical Institute. The studies from the Department of Endocrinology, University of Lund were supported by grants from the Sigrid Juselius Foundation, the Albert Påhlssons Foundation, the Swedish Medical Research Council, Medical Faculty of Lund University, Malmö University Hospital, the Ernhold Lundström Foundation, the Swedish Foundation for the Study of Diabetes, the Anna-Lisa and Sven-Eric Lundgren Foundation for Medical Research, Novo Nordic Foundation, the Juvenile Diabetes Foundation International and an EEC Grant BMH4-CT95-0662.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme I. Bell.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horikawa, Y., Oda, N., Cox, N. et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 26, 163–175 (2000). https://doi.org/10.1038/79876

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79876

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing