Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

How many diseases does it take to map a gene with SNPs?

“They all talked at once, their voices insistent and contradictory and impatient, making of unreality a possibility, then a probability, then an incontrovertible fact, as people will when their desires become words.” —W. Faulkner, The Sound and the Fury, 1929

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic model of trait aetiology.

References

  1. Brookes, A. The essence of SNPs. Gene 234, 177–186 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Collins, F.S. The human genome project and the future of medicine. Ann. N. Y. Acad. Sci. 882, 42–55 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Collins, F.S. Genetics: an explosion of knowledge is transforming clinical practice. Geriatrics 54, 41–47 (1999).

    CAS  PubMed  Google Scholar 

  4. Russo, E. Bypassing peer review. The Scientist 14, 1–12 (2000).

    Google Scholar 

  5. Sander, C. Genomic medicine and the future of health care. Science 287, 1977–1978 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Cargill, M. et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genet. 22, 231–238 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Chakravarti, A. Population genetics—making sense out of sequence. Nature Genet. 21, 56–60 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Collins, F., Brooks, L. & Chakravarti, A. A DNA polymorphism discovery resource for research on human genetic variation. Genome Res. 8, 1229–1231 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Pastinen, T. et al. Array-based multiplex analysis of candidate genes reveals two independent and additive genetic risk factors for myocardial infarction in the Finnish population.l. Hum. Mol. Genet. 7, 1453–1462 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Kruglyak, L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nature Genet. 22, 139–144 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, D. & Lander, E. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280, 1077–1082 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Zöllner, S. & von Haeseler, A. A coalescent approach to study linkage disequilibrium between single-nucleotide polymorphisms. Am. J. Hum. Genet. 66, 615–628 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Terwilliger, J.D. & Weiss, K.M. Linkage disequilibrium mapping of complex disease: fantasy or reality? Curr. Opin. Biotech. 9, 578–594 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Terwilliger, J.D. & Goring, H.H. Gene mapping in the 20th and 21st centuries: statistical methods, data analysis, and experimental design. Hum. Biol. 72, 63–132 (2000).

    CAS  PubMed  Google Scholar 

  15. Terwilliger, J.D. A likelihood-based extended admixture model of oligogenic inheritance in “model-based” or “model-free” analysis. Eur. J. Hum. Genet. (in press).

  16. Göring, H.H. & Terwilliger, J.D. Linkage analysis in the presence of errors. III. Marker loci and their map as nuisance parameters. Am. J. Hum. Genet. 66, 1298–1309 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Göring, H.H. & Terwilliger, J.D. Linkage analysis in the presence of errors. l V. Joint pseudomarker analysis of linkage and/or linkage disequilibrium on a mixture of pedigrees and singletons when the mode of inheritance cannot be accurately specified. Am. J. Hum. Genet. 66, 1310–1327 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Heckenlively, J. & Daiger, S. Heredity and retinal and choroidal degenerations. in Emory and Rimoin's Principles and Practice of Medical Genetics (eds Rimoin, D., Connor, J. & Pyeritz, R.) 2555–2576 (Churchill-Livingstone, Edinburgh, 1996).

    Google Scholar 

  19. Terwilliger, J.D. On the resolution and feasibility of genome scanning approaches to unraveling the genetic components of multifactorial phenotypes.l. in Genetic Dissection of Complex Phenotypes: Challenges for the Next Millennium (eds Rao, D.C. & Province, M.A.) (Academic, New York, 2000).

    Google Scholar 

  20. Collins, A., Lonjou, C. & Morton, N.E. Genetic epidemiology of single-nucleotide polymorphisms. Proc. Natl Acad. Sci. USA 96, 15173–15177 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schork, N.J., Cardon, L.R. & Xu, X. The future of genetic epidemiology. Trends Genet. 14, 266–272 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Ott, J. Predicting the range of linkage disequilibrium. Proc. Natl Acad. USA 97, 2–3 (2000).

    Article  CAS  Google Scholar 

  23. Weiss, K.M. Genetic Variation and Human Disease: Principles and Evolutionary Approaches (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  24. Weiss, K. Is there a paradigm shift in genetics? Lessons from the study of human diseases. Mol. Phylogenet. Evol. 5, 259–265 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Clark, A.G. et al. Haplotype structure and population genetic inferences from nucleotide-sequence variation in human lipoprotein lipase. Am. J. Hum. Genet. 63, 595–612 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nickerson, D.A. et al. DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nature Genet. 19, 233–240 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Templeton, A.R. et al. Recombinational and mutational hotspots within the human lipoprotein lipase gene. Am. J. Hum. Genet. 66, 69–83 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sing, C. et al. Genotype-phenotype studies based on the full DNA sequence of the Apo E gene demonstrate the challenge we face in the assignment of function to a particular DNA polymorphism. Am. J. Hum. Genet. 65, A14 (1999).

    Google Scholar 

  29. Roberts, L. Human genome research. SNP mappers confront reality and find it daunting. Science 287, 1898–1899 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Terwilliger, J.D., Zollner, S., Laan, M. & Paabo, S. Mapping genes through the use of linkage disequilibrium generated by genetic drift: ‘Drift mapping’ in small populations with no demographic expansion. Hum. Hered. 48, 148–154 (1998).

    Article  Google Scholar 

  31. Eaves, I.A. et al. The genetically isolated populations of Finland and Sardinia may not be a panacea for linkage disequilibrium mapping of common disease genes Nature Genet. 25, 320–323 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Varilo, T. et al. Linkage disequilibrium in isolated populations: Finland and a young sub-population of Kuusamo. Eur. J. Hum. Genet. 8, 604–612 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Halushka, M.K. et al. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nature Genet. 22, 239–247 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Garg, K., Green, P. & Nickerson, D. Identification of candidate coding region single nucleotide polymorphisms in 165 human genes using assembled expressed sequence tags. Genome Res. 9, 1087–1092 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Picoult-Newberg, L. et al. Mining SNPs from EST databases. Genome Res. 9, 167–174 (1999)-

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Irizarry, K. et al. Genome-wide analysis of single-nucleotide polymorphisms in human expressed sequences. Nature Genet. 26, 233–236 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Beckwith, J. & Zipser, D. (eds) The Lactose Operon (Cold Spring Harbor Laboratory, Cold Spring Harbor, 1970).

    Google Scholar 

  38. Long, A., Lyman, R., Langley, C. & Mackay, T.F. Two sites in the Delta gene region contribute to naturally occurring variation in bristle number in Drosophila melanogaster. Genetics 149, 999–1017 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mackay, T.F. The nature of quantitative genetic variation revisited: lessons from Drosophila bristles. Bioessays 18, 113–121 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Stam, L. & Laurie, C. Molecular dissection of a major gene effect on a quantitative trait: the level of alcohol dehydrogenase expression in Drosophila melanogaster. Genetics 144, 1559–1564 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hendrich, Z. & Willard, H. Epigenetic regulation of gene expression—the effect of altered chromatic structure from yeast to mammals. Hum. Mol. Genet. 4, 1765–1777 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Artiga, M. et al. Risk for Alzheimer's disease correlates with transcriptional activity of the APOE gene. Hum. Mol. Genet. 7, 1887–1892 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Hall, S. et al. A common mutation in the lipoprotein lipase gene promoter, −93T/G, is associated with lower plasma triglyceride levels and increased promoter activity in vitro. Arteriorscler. Thromb. Vasc. Biol. 17, 1969–1976 (1997).

    Article  CAS  Google Scholar 

  44. Gragnoli, C. et al. Maturity-onset diabetes of the young due to a mutation in the hepatocyte nuclear factor-4 α binding site in the promoter of the hepatocyte nuclear factor-1 α gene. Diabetes 46, 1648–1651 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Scholtz, C. et al. Mutation −59C→T in repeat 2 of the LDL receptor promoter: reduction in transcriptional activity and possible allelic interaction in a South African family with familial hypercholesterolemia. Hum. Mol. Genet. 8, 2025–2030 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Steel, C. Cancer of the breast and female reproductive tract. in Emory and Rimoin's Principles and Practice of Medical Genetics (eds Rimoin, D., Connor, J. & Pyertiz, R.) 1501–1524 (Churchill-Livingstone, Edinburgh, 1996).

    Google Scholar 

  47. Horikawa, Y. et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nature Genet. 26, 163–175 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Weiss, K. In search of human variation. Genome Res. 8, 691–697 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Schlichting, C. & Pigliucci, M. Phenotypic Evolution: A Reaction Norm Perspective (Sinauer Associates, Sunderland, 1998).

    Google Scholar 

  50. Weiss, K. & Fullerton, S. Phenogenetic drift and the evolution of genotype-phenotype relationships. Theor. Popul. Biol. (in press).

  51. Waterland, R. & Garza, C. Potential mechanisms of metabolic imprinting that lead to chronic disease. Am. J. Clin. Nutr. 69, 179–197 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Trowell, H. & Burkitt, D. Western Diseases: Their Emergence & Prevention (Harvard University Press, Cambridge, Massachusetts, 1981).

    Google Scholar 

  53. Shephard, R. & Rode, A. The Health Consequences of “Modernization” (Cambridge University Press, Cambridge, UK, 1996).

    Google Scholar 

  54. Anderson, N.L. & Anderson, N.G. Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19, 1853–1861 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Brent, R. Functional genomics: Learning to think about gene expression data. Curr. Biol. 9, 338–341 (1999).

    Article  Google Scholar 

  56. Brent, R. Genomic biology. Cell 100, 169–183 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Schena, M. et al. Microarrays: biotechnology's discovery platform for functional genomics. Trends Biotechnol. 16, 301–306 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Woychik, R., KIebig, M., Jusice, M., Magnusson, T. & Avrer, E. Functional genomics in the post-genome era. Mut. Res. 400, 3–14 (1998).

    Article  CAS  Google Scholar 

  59. Bojko, E. & Larsen, T. Changes in the serum lipid proflie in man during 24 months Arctic residence. Int. J. Circumpolar Health 58, 170–175 (1999).

    CAS  PubMed  Google Scholar 

  60. Bojko, E. Metabolical changes induced by adaptation to circumpolar conditions in Spitzbergen. Int. J. Circumpolar Health 56, 134–141 (1997).

    CAS  PubMed  Google Scholar 

  61. Rowell, L.B. Human Cardiovascular Control (Oxford University Press, Oxford, 1993).

    Book  Google Scholar 

  62. Hatfield, F. & Platz, T. Hardcore Bodybuilding: a Scientific Approach (Contemporary Books, Chicago, 1993).

  63. Schlief, R. Genetics & Molecular Biology (Addison-Wesley, Reading, Massachusetts, 1986).

    Google Scholar 

  64. Cole, K.A., Krizman, D.B. & Emmert-Buck, M.R. The genetics of cancer—a 3D model. Nature Genet. 21, 38–41 (2000).

    Article  Google Scholar 

  65. Ewens, W.J. Tay-Sachs disease and theoretical population genetics. Am. J. Hum. Genet. 30, 328–329 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Trembath, R. et al. Identification of a major susceptibility locuson chromosome 6p and evidence for further disease loci revealed by a two stage genome-wide search in psoriasis. Hum. Mol. Genet. 6, 813–820 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Tang, M.X. et al. Relative risk of Alzheimer disease and age-at-onset distributions, based on APOE genotypes among elderly African Americans, Caucasians, and Hispanics in New York City. Am. J. Hum. Genet. 58, 574–584 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Farrer, L.A. et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278, 1349–1356 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Tang, M. et al. The APOE-epsilon4 allele and the risk of Alzheimer disease among African-Americans, Whites, and Hispanics. JAMA 2789, 751–755 (1998).

    Article  Google Scholar 

  70. Nikali, K. et al. Random search for shared chromosomal regions in four affected individuals. Am. J. Hum. Genet. 56, 1088–1095 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Martin, E.R. et al. SNPing away at complex diseases: analysis of single-nucleotide polymorphisms around APOE in alzheimer disease. Am. J. Hum. Genet. 67, 383–394 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Martin, E.R. et al. Analysis of association at single nucleotide polymorphisms in the APOE region. Genomics 63, 7–12 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Bjerregard, P. & Young, T. The Circumpolar Inuit: Health of a Population in Transition (Munksgaard, Copenhagen, 1998).

    Google Scholar 

  74. Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. McKusick, V.A. Mendelian Inheritance in Man. A Catalog of Human Genes and Genetic Disorders (Johns Hopkins University Press, Baltimore, Maryland, 1998).

    Google Scholar 

  76. Sarkar, S. Genetics and Reductionism (Cambridge University Press, Cambridge, UK, 1998).

    Book  Google Scholar 

Download references

Acknowledgements

Support to J.D.T. is acknowledged from a Hitchings-Elion Fellowship from the Burroughs-Wellcome Fund, and to K.M.W. from NIH grant HL 58239. The opinions in this article are the personal views of the authors, and do not necessarily reflect the views or policies of the funders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth M. Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, K., Terwilliger, J. How many diseases does it take to map a gene with SNPs?. Nat Genet 26, 151–157 (2000). https://doi.org/10.1038/79866

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79866

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing