Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Retroposition of autosomal mRNA yielded testis-specific gene family on human Y chromosome

An Erratum to this article was published on 01 June 1999

Abstract

Most genes in the human NRY (non-recombining portion of the Y chromosome) can be assigned to one of two groups: X-homologous genes or testis-specific gene families with no obvious X-chromosomal homologues1,2. The CDY genes have been localized to the human Y chromosome1, and we report here that they are derivatives of a conventional single-copy gene, CDYL (CDY-like), located on human chromosome 13 and mouse chromosome 6. CDY genes retain CDYL exonic sequences but lack its introns. In mice, whose evolutionary lineage diverged before the appearance of the Y-linked derivatives, the autosomal Cdyl gene produces two transcripts; one is expressed ubiquitously and the other is expressed in testes only. In humans, autosomal CDYL produces only the ubiquitous transcript; the testis-specific transcript is the province of the Y-borne CDY genes. Our data indicate that CDY genes arose during primate evolution by retroposition of a CDYL mRNA and amplification of the retroposed gene. Retroposition contributed to the gene content of the human Y chromosome, together with two other molecular evolutionary processes: persistence of a subset of genes shared with the X chromosome3,4 and transposition of genomic DNA harbouring intact transcription units5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human CDY proteins and transcripts.
Figure 2: Comparison of transcripts and encoded proteins from mouse Cdyl, human CDYL and human CDY1 genes.
Figure 3: Homologues of CDYL and CDY in diverse mammalian species.
Figure 4: Tissue distributions of mouse Cdyl, human CDYL and human CDY transcripts.
Figure 5: Schematic representation of three molecular evolutionary processes that contributed genes to human NRY.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Lahn, B.T. & Page, D.C. Functional coherence of the human Y chromosome. Science 278, 675– 680 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Vogt, P.H. et al. Report of the Third International Workshop on Y chromosome mapping 1997. Cytogenet. Cell Genet. 79, 1–20 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Graves, J.A.M. The origin and function of the mammalian Y chromosome and Y-borne genes—an evolving understanding. BioEssays 17, 311 –321 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Jegalian, K. & Page, D.C. A proposed path by which genes common to mammalian X and Y chromosomes evolve to become X inactivated. Nature 394, 776–780 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  5. Saxena, R. et al. The DAZ gene cluster on the human Y chromosome arose from an autosomal gene that was transposed, repeatedly amplified and pruned. Nature Genet. 14, 292– 299 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Vollrath, D. et al. The human Y chromosome: a 43-interval map based on naturally occurring deletions. Science 258, 52– 59 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. De Bry, R.W. & Seldin, M.F. Human/mouse homology relationships. Genomics 33, 337–351 (1996).

    Article  CAS  Google Scholar 

  8. Yen, P.H., Chai, N.N. & Salido, E.C. The human autosomal gene DAZLA: testis specificity and a candidate for male infertility. Hum. Mol. Genet. 5, 2013–2017 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Shan, Z. et al. A SPGY copy homologous to the mouse gene Dazla and the Drosophila gene boule is autosomal and expressed only in the human male gonad. Hum. Mol. Genet. 5, 2005–2011 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Cooke, H.J., Lee, M., Kerr, S. & Ruggiu, M. A murine homologue of the human DAZ gene is autosomal and expressed only in male and female gonads. Hum. Mol. Genet. 5, 513– 516 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Reijo, R. et al. Mouse autosomal homolog of DAZ, a candidate male sterility gene in humans, is expressed in male germ cells before and after puberty. Genomics 35, 346–352 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Ganguly, R., Swanson, K.D., Ray, K. & Krishnan, R. A BamHI repeat element is predominantly associated with the degenerating neo-Y chromosome of Drosophila miranda but absent in the Drosophila melanogaster genome. Proc. Natl Acad. Sci. USA 89, 1340–1344 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Steinemann, M. & Steinemann, S. Degenerating Y chromosome of Drosophila miranda: a trap for retroposons. Proc. Natl Acad. Sci. USA 89, 7591– 7595 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Steinemann, M. & Steinemann, S. The enigma of Y chromosome degeneration: TRAM, a novel retrotransposon is preferentially located on the Neo-Y chromosome of Drosophila miranda. Genetics 145, 261–266 ( 1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Eicher, E.M., Hutchison, K.W., Phillips, S.J., Tucker, P.K. & Lee, B.K. A repeated segment on the mouse Y chromosome is composed of retroviral-related, Y-enriched and Y-specific sequences. Genetics 122, 181–192 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Charlesworth, B., Sniegowski, P. & Stephan, W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371, 215–220 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Gyapay, G. et al. A radiation hybrid map of the human genome. Hum. Mol. Genet. 5, 339–346 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  18. Hudson, T.J. et al. An STS-based map of the human genome. Science 270, 1945–1954 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  19. Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Novacek, M.J. Mammalian phylogeny: shaking the tree. Nature 356, 121–125 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Kumar, S. & Hedges, S.B. A molecular timescale for vertebrate evolution. Nature 392, 917– 920 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Pilbeam, D. The descent of hominoids and hominids. Sci. Am. 250 , 84–96 (1984).

    Article  CAS  PubMed  Google Scholar 

  23. Ohno, S. Sex Chromosomes and Sex-linked Genes (Springer-Verlag, Berlin, 1967).

    Book  Google Scholar 

  24. Watson, J.M., Spencer, J.A., Riggs, A.D. & Graves, J.A. Sex chromosome evolution: platypus gene mapping suggests that part of the human X chromosome was originally autosomal. Proc. Natl Acad. Sci. USA 88, 11256–11260 ( 1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Foster, J.W. & Graves, J.A. An SRY-related sequence on the marsupial X chromosome: implications for the evolution of the mammalian testis-determining gene. Proc. Natl Acad. Sci. USA 91, 1927 –1931 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. Skaletsky and F. Lewitter for assistance with sequence analysis; the San Diego Zoo and the Duke Primate Center for animal specimens; and P. Bain, A. Bortvin, L. Brown, C. Burge, B. Charlesworth, A. Chess, S. Gilbert, R. Jaenisch, T. Kawaguchi, K. Kleene, D. Menke, R. Saxena, C. Sun, C. Tilford and J. Wang for helpful discussions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C Page.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahn, B., Page, D. Retroposition of autosomal mRNA yielded testis-specific gene family on human Y chromosome. Nat Genet 21, 429–433 (1999). https://doi.org/10.1038/7771

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/7771

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing