Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate

Abstract

Hereditary multiple exostoses (HME) is an autosomal dominant disorder characterized by the formation of cartilage-capped tumours (exostoses) that develop from the growth plate of endochondral bone1. This condition can lead to skeletal abnormalities, short stature and malignant transformation of exostoses to chondrosarcomas2,3 or osteosarcomas4,5. Linkage analyses have identified three different genes for HME, EXT1 on 8q24.1, EXT2 on 11p11–13 and EXT3 on 19p (refs 6, 7, 8, 9). Most HME cases have been attributed to missense or frameshift mutations in these tumour-supressor genes, whose functions have remained obscure. Here, we show that EXT1 is an ER-resident type II transmembrane glycoprotein whose expression in cells results in the alteration of the synthesis and display of cell surface heparan sulfate glycosaminoglycans (GAGs). Two EXT1 variants containing aetiologic missense mutations10 failed to alter cell-surface glycosaminoglycans, despite retaining their ER-localization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sog9 cells transfected with EXT1 are susceptible to HSV-1 infection.
Figure 2: EXT1-expressing cell lines synthesize a heparan-sulfate glycosaminoglycan.
Figure 3: EXT1 is localized to the endoplasmic reticulum.
Figure 4: EXT1myc is modified by high-mannose N-linked oligosaccharides.
Figure 5: Mutations in EXT1 render the protein inactive.

Similar content being viewed by others

References

  1. Solomon, L. Hereditary multiple exostosis. J. Bone Joint Surg. 45, 292–304 (1963).

    Article  Google Scholar 

  2. Hennekam, R.C. Hereditary multiple exostoses. J. Med. Genet. 28, 262 –266 (1991).

    Article  CAS  Google Scholar 

  3. Leone, N.C. et al. Hereditary multiple exostosis. A comparative human-equine-epidemiologic study. J. Hered. 78, 171–177 (1987).

    Article  CAS  Google Scholar 

  4. Schmale, G.A., Conrad, E.U. Raskind, W.H. The natural history of hereditary multiple exostoses. J. Bone Joint Surg. Am. 76, 986–992 ( 1994).

    Article  CAS  Google Scholar 

  5. Luckert-Wicklund, C., Pauli, R., Johnston, D. Hecht, J. Natural history of hereditary multiple exostoses. Am. J. Med. Genet. 55, 43–46 (1995).

    Article  Google Scholar 

  6. Ahn, J. et al. Cloning of the putative tumour suppressor gene for hereditary multiple exostoses (EXT1). Nature Genet. 11, 137–143 (1995).

    Article  CAS  Google Scholar 

  7. Cook, A. et al. Genetic heterogeneity in families with hereditary multiple exostoses. Am. J. Hum. Genet. 53, 71–79 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. LeMerrer, M. et al. A gene for hereditary multiple exostoses maps to chromosome 19p. Hum. Mol. Genet. 3, 717–722 (1994).

    Article  CAS  Google Scholar 

  9. Wu, Y.Q. et al. Assignment of a second locus for multiple exostoses to the pericentromeric region of chromosome 11. Hum. Mol. Genet. 3, 167–171 (1994).

    Article  CAS  Google Scholar 

  10. Philippe, C. et al. Mutation screening of the EXT1 and EXT2 genes in patients with hereditary multiple exostoses. Am. J. Hum. Genet. 61, 520–528 (1997).

    Article  CAS  Google Scholar 

  11. WuDunn, D. Spear, P.G. Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J. Virol. 63, 52–58 (1989).

    Article  CAS  Google Scholar 

  12. Herold, B.C., Visalli, R.J., Susmarski, N., Brandt, C.R. Spear, P.G. Glycoprotein C-independent binding of herpes simplex virus to cells requires cell surface heparan sulphate and glycoprotein B. J. Gen. Virol. 75, 1211–1222 ( 1994).

    Article  CAS  Google Scholar 

  13. Herold, B.C., WuDunn, D., Soltys, N. Spear, P.G. Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. J. Virol. 65, 1090–1098 (1991).

    Article  CAS  Google Scholar 

  14. Cai, W., Gu, B. Person, S. Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion. J. Virol. 62, 2596–2604 (1988).

    Article  CAS  Google Scholar 

  15. Banfield, B.W., Leduc, Y., Esford, L., Schubert, K. Tufaro, F. Sequential isolation of proteoglycan synthesis mutants by using herpes simplex virus as a selective agent: evidence for a proteoglycan-independent virus entry pathway. J. Virol. 69, 3290–3298 (1995).

    Article  CAS  Google Scholar 

  16. Gruenheid, S., Gatzke, L., Meadows, H. Tufaro, F. Herpes simplex virus infection and propagation in a mouse L cell mutant lacking heparan sulfate proteoglycans. J. Virol. 67, 93–100 (1993).

    Article  CAS  Google Scholar 

  17. Schutze, M.P., Peterson, P.A. Jackson, M.R. An N-terminal double-arginine motif maintains type II membrane proteins in the endoplasmic retiuculum. EMBO J. 13, 1696–1705 (1994).

    Article  CAS  Google Scholar 

  18. Teasdale, R.D. Jackson, M.R. Signal-Mediated Sorting of Membrane Proteins Between the Endoplasmic Reticulum and the Golgi Apparatus. Annu. Rev. Cell Dev. Biol. 12, 27–54 (1996).

    Article  CAS  Google Scholar 

  19. Hecht, J.T. et al. Hereditary multiple exostoses (EXT): mutational studies of familial EXT1 cases and EXT-associated malignancies. Am. J. Hum. Genet. 60, 80–86 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bernstein, L.R. Liotta, L.A. Molecular mediators of interactions with extracellular matrix components in metastasis and angiogenesis. Curr. Opin. Oncol. 6, 106–113 (1994).

    Article  CAS  Google Scholar 

  21. Tuszynski, G.P., Wang, T.N. Berger, D. Adhesive proteins and the hematogenous spread of cancer. Acta Haematol. 97, 29–39 ( 1997).

    Article  CAS  Google Scholar 

  22. Schamhart, D.H. Kurth, K.H. Role of proteoglycans in cell adhesion of prostate cancer cells: from review to experiment. Urol. Res. 25, S89–96 ( 1997).

    Article  CAS  Google Scholar 

  23. Esko, J.D., Rostand, K.S. Weinke, J.L. Tumour formation dependent on proteoglycan biosynthesis. Science 241, 1092–1096 ( 1988).

    Article  CAS  Google Scholar 

  24. Iida, J., Meijne, A.M., Knutson, J.R., Furcht, L.T. McCarthy, J.B. Cell surface chondroitin sulfate proteoglycans in tumour cell adhesion, motility and invasion. Semin. Cancer Biol. 7, 155–162 (1996).

    Article  CAS  Google Scholar 

  25. Iozzo, R.V. Cohen, I. Altered proteoglycan gene expression and the tumour stroma. Experientia 49, 447–455 (1993).

    Article  CAS  Google Scholar 

  26. Wise, C.A., Clines, G.A., Massa, H., Trask, B.J. Lovett, M. Identification and localization of the gene for EXTL, a third member of the multiple exostoses gene family. Genome Res. 7, 10–16 (1997).

    Article  CAS  Google Scholar 

  27. Wuyts, W. et al. Identification and characterization of a novel member of the EXT gene family, EXTL2. Eur. J. Hum. Genet. 5, 382–389 (1997).

    Article  CAS  Google Scholar 

  28. Van Hul, W. et al. Identification of a Third EXT-like Gene (EXTL3) Belonging to the EXT Gene Family. Genomics 47, 230–237 (1998).

    Article  CAS  Google Scholar 

  29. Esko, J.D., Stewart, T.E. Taylor, W.H. Animal cell mutants defective in glycosaminoglycan biosynthesis. Proc. Natl. Acad. Sci. USA 82, 3197–3201 (1985).

    Article  CAS  Google Scholar 

  30. Bame, K.J. Esko, J.D. Undersulfated heparan sulfate in a Chinese hamster ovary cell mutant defective in heparan sulfate N-sulfotransferase. J. Biol. Chem. 264, 8059–8065 (1989).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Roizman and L. Enquist for helpful discussions. This work was supported by grants to F.T. from the Medical Research Council of Canada and the Canadian Genetic Diseases Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Tufaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCormick, C., Leduc, Y., Martindale, D. et al. The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate. Nat Genet 19, 158–161 (1998). https://doi.org/10.1038/514

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/514

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing