Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fgf10 is essential for limb and lung formation

A Publisher Correction to this article was published on 04 April 2019

Abstract

The interactions between fibroblast growth factors (FGF) and their receptors have important roles in mediating mesenchymal-epithelial cell interactions during embryogenesis1,2. In particular, Fgf10 is predicted to function as a regulator of brain, lung and limb development on the basis of its spatiotemporal expression pattern in the developing embryo. To define the role of Fgf10, we generated Fgf10-deficient mice. Fgf10-/- mice died at birth due to the lack of lung development. Trachea was formed, but subsequent pulmonary branching morphogenesis was disrupted. In addition, mutant mice had complete truncation of the fore- and hindlimbs. In Fgf10–/– embryos, limb bud formation was initiated but outgrowth of the limb buds did not occur; however, formation of the clavicles was not affected. Analysis of the expression of marker genes in the mutant limb buds indicated that the apical ectodermal ridge (AER) and the zone of polarizing activity (ZPA) did not form. Thus, we show here that Fgf10 serves as an essential regulator of lung and limb formation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted disruption of the Fgf10 gene.
Figure 2: Skeletal malformation in Fgf10 mutant mice.
Figure 4: Absence of lung in Fgf10-/- mice.
Figure 3: Failure of induction of downstream genes of Fgf10 in the limb bud of Fgf10-/- embryos.
Figure 5: Morphology and gene expression in E11.

Similar content being viewed by others

References

  1. Goldfarb, M. Functions of fibroblast growth factors in vertebrate development. Cytokine Growth Factor Rev. 7, 311– 325 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Martin, G.R. The roles of FGFs in the early development of vertebrate limbs. Genes Dev. 12, 1571–1586 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Johnson, R.L. & Tabin, C.J. Molecular models for vertebrate limb development. Cell 90, 979– 990 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Rubin, L. & Saunders, J.W. Ectodermal-mesodermal interactions in the growth of limb buds in the chick embryo: constancy and temporal limits of the ectodermal induction. Dev. Biol. 28, 94–112 (1972).

    Article  CAS  PubMed  Google Scholar 

  5. Ohuchi, H. et al. The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development 124, 2235– 2244 (1997).

    CAS  PubMed  Google Scholar 

  6. Xu, X. et al. Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development 125, 753–765 (1998).

    CAS  PubMed  Google Scholar 

  7. Yamasaki, M., Miyake, A., Tagashira, S. & Itoh, N. Structure and expression of the rat mRNA encoding a novel member of the fibroblast growth factor family. J. Biol. Chem. 271, 15918 –15921 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Bellusci, S., Grindley, J., Emoto, H., Itoh, N. & Hogan, B.L. Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 124, 4867–4878 (1997).

    CAS  PubMed  Google Scholar 

  9. Peters, K. et al. Targeted expression of a dominant negative FGF receptor blocks branching morphogenesis and epithelial differentiation of the mouse lung. EMBO J. 13, 3296–3301 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hogan, B.L. & Yingling, J.M. Epithelial/mesenchymal interactions and branching morphogenesis of the lung. Curr. Opin. Genet. Dev. 8, 481–486 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  11. Min, H. et al. Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev. 12, 3156–3161 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ohuchi, H. et al. Involvement of androgen-induced growth factor (FGF-8) gene in mouse embryogenesis and morphogenesis. Biochem. Biophys. Res. Commun. 204, 882–888 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  13. Crossley, P.H., Minowada, G., MacArthur, C.A. & Martin, G.R. Roles for FGF8 in the induction, initiation, and maintenance of chick limb development. Cell 84, 127– 136 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Vogel, A., Rodriguez, C. & Izpisua, B.J. Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb. Development 122, 1737–1750 (1996).

    CAS  PubMed  Google Scholar 

  15. Meyers, E.N., Lewandoski, M. & Martin, G.R. An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nature Genet. 18, 136–141 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Francis, P.H., Richardson, M.K., Brickell, P.M. & Tickle, C. Bone morphogenetic proteins and a signalling pathway that controls patterning in the developing chick limb. Development 120, 209–218 (1994).

    CAS  PubMed  Google Scholar 

  17. Grieshammer, U., Minowada, G., Pisenti, J.M., Abbott, U.K. & Martin, G.R. The chick limbless mutation causes abnormalities in limb bud dorsal-ventral patterning: implications for the mechanism of apical ridge formation. Development 122 , 3851–3861 (1996).

    CAS  PubMed  Google Scholar 

  18. Chen, H. et al. Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome. Nature Genet. 19, 51–55 ( 1998).

    Article  PubMed  Google Scholar 

  19. Riddle, R.D., Johnson, R.L., Laufer, E. & Tabin, C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  20. Chang, D.T. et al. Products, genetic linkage and limb patterning activity of a murine hedgehog gene. Development 120, 3339–3353 (1994).

    CAS  PubMed  Google Scholar 

  21. Johnson, R.L. & Tabin, C. The long and short of hedgehog signaling. Cell 81, 313– 316 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Gibson-Brown, J.J. et al. Evidence of a role for T-box genes in the evolution of limb morphogenesis and the specification of forelimb/hindlimb identity. Mech. Dev. 56, 93–101 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  23. Gibson-Brown, J.J., Agulnik, S.I., Silver, L.M., Niswander, L. & Papaioannou, V.E. Involvement of T-box genes Tbx2-Tbx5 in vertebrate limb specification and development. Development 125, 2499–2509 (1998).

    CAS  PubMed  Google Scholar 

  24. Ohuchi, H. et al. Correlation of wing-leg identity in ectopic FGF-induced chimeric limbs with the differential expression of chick Tbx5 and Tbx4. Development 125, 51–60 ( 1998).

    CAS  PubMed  Google Scholar 

  25. Bellusci, S. et al. Involvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis. Development 124, 53–63 (1997).

    CAS  PubMed  Google Scholar 

  26. Pepicelli, C.V., Lewis, P.M., & McMahon, A.P. Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr. Biol. 8, 1083– 1086 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Litingtung, Y., Lei, L., Westphal, H. & Chiang, C. Sonic hedgehog is essential to foregut development. Nature Genet. 20, 58–61 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Yoshizawa, T. et al. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nature Genet. 16, 391–396 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Takeyama, K. et al. 25-Hydroxyvitamin D3 1α-hydroxylase and vitamin D synthesis. Science 277, 1827–1830 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Lufkin, T., Dierich, A., LeMeur, M., Mark, M. & Chambon, P. Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell 66, 1105–1119 ( 1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B.L.M. Hogan for critical reading and helpful discussion throughout this study; S. Noji and S. Bellusci for helpful discussion and advise; R. Yu for critical reading; V.E. Papaioannou, A. Tanaka, A. McMahon, T. Nohno and R.L. Johnson for cDNA probes; and S. Kume, Y. Yogiashi, K. Arioka, T. Kawakami and K. Takeyama for technical assistance. This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Sports, Science and Culture of Japan (S.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeaki Kato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekine, K., Ohuchi, H., Fujiwara, M. et al. Fgf10 is essential for limb and lung formation. Nat Genet 21, 138–141 (1999). https://doi.org/10.1038/5096

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/5096

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing