Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1

Abstract

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by expansion of a polyglutamine tract in ataxin-1. In affected neurons of SCA1 patients and transgenic mice, mutant ataxin-1 accumulates in a single, ubiquitin-positive nuclear inclusion. In this study, we show that these inclusions stain positively for the 20S proteasome and the molecular chaperone HDJ-2/HSDJ. Similarly, HeLa cells transfected with mutant ataxin-1 develop nuclear aggregates which colocalize with the 20S proteasome and endogenous HDJ-2/HSDJ. Overexpression of wild-type HDJ-2/HSDJ in HeLa cells decreases the frequency of ataxin-1 aggregation. These data suggest that protein misfolding is responsible for the nuclear aggregates seen in SCA1, and that overexpression of a DnaJ chaperone promotes the recognition of a misfolded polyglutamine repeat protein, allowing its refolding and/or ubiquitin-dependent degradation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunohistochemical localization of 20S proteasome in brainstem neurons from an SCA1 patient and Purkinje cells of transgenic mice.
Figure 2: Immunohistochemical staining of HDJ-2/HSDJ in SCA1-patient neurons and transgenic mice Purkinje cells.
Figure 3: Ubiquitin immunostaining in COS7 cells expressing ataxin-1-GFP demonstrates the presence of ubiquitin in ataxin-1 aggregates.
Figure 4: Subcellular localization of 20S proteasome and ataxin-1 in HeLa cells.
Figure 5: Colocalization of endogenous HDJ-2/HSDJ and HSP70 with ataxin-1 nuclear aggregates.
Figure 6: Suppression of ataxin-1 aggregation in cells overexpressing HDJ-2/HSDJ.

Similar content being viewed by others

References

  1. Wisniewski, T., Ghiso, J. & Frangione, B. Biology of A beta amyloid in Alzheimer's disease. Neurobiol. Dis. 4, 313–328 (1997)

    Article  CAS  PubMed  Google Scholar 

  2. Polymeropoulos, M.H. et al. Mutation in the α-Synuclein Gene Identified in Families with Parkinson's Disease. Science 276, 2045–2047 (1997)

    Article  CAS  PubMed  Google Scholar 

  3. Prusiner, S.B. Prion diseases and the BSE crisis. Science 278, 245–251 (1997)

    Article  CAS  PubMed  Google Scholar 

  4. Davies, S.W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548 (1997)

    Article  CAS  PubMed  Google Scholar 

  5. DiFiglia, M. et al. Aggregation of Huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993 (1997)

    Article  CAS  PubMed  Google Scholar 

  6. Igarashi, S. et al. Suppression of aggregate formation and apoptosis by transglutaminase inhibitors in cells expressing truncated DRPLA protein with an expanded polyglutamine stretch. Nature Genet. 18, 111–117 (1998)

    Article  CAS  PubMed  Google Scholar 

  7. Skinner, P.J. et al. Ataxin-1 with extra glutamines induces alterations in nuclear matrix-associated structures. Nature 389, 971–974 (1997)

    Article  CAS  PubMed  Google Scholar 

  8. Paulson, H.L. et al. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia Type 3. Neuron 19, 333–334 (1997)

    Article  CAS  PubMed  Google Scholar 

  9. Zoghbi, H.Y. & Orr, H.T. Spinocerebellar ataxia type 1. Semin. Cell Biol. 6, 29–35 (1995)

    Article  CAS  PubMed  Google Scholar 

  10. Perutz, M.F., Johnson, T., Suzuki, M. & Finch, J.T. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases . Proc. Natl. Acad. Sci. USA 91, 5355–5358 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stott, K., Blackburn, J.M., Butler, P.J.G. & Perutz, M. Incorporation of glutamine repeats makes protein oligomerize: Implications for neurodegenerative diseases. Proc. Natl. Acad. Sci. USA 92, 6509–6513 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hershko, A. & Ciechanover, A. The ubiquitin system for protein degradation. Annu. Rev. Biochem. 61, 761 –807 (1992)

    Article  CAS  PubMed  Google Scholar 

  13. Hochstrasser, M. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30, 405–439 (1996)

    Article  CAS  PubMed  Google Scholar 

  14. Adams, G.M. et al. Structural and Functional Effects of PA700 and Modular Protein on Proteasomes . J. Mol. Biol. 273, 646–657 (1997)

    Article  CAS  PubMed  Google Scholar 

  15. Coux, O., Tanaka, K. & Goldberg, A.L. Structure and functions of the 20S and 26S proteasomes . Annu. Rev. Biochem. 65, 801–847 (1996)

    Article  CAS  PubMed  Google Scholar 

  16. Bush, K.T., Goldberg, A.L. & Nigam, S.K. Proteasome Inhibition Leads to a Heat-shock Response, Induction of Endoplasmic Reticulum Chaperones, and Thermotolerance. J. Biol. Chem. 272, 9086–9092 (1997)

    Article  CAS  PubMed  Google Scholar 

  17. Zhou, M., Wu, X. & Ginsberg, H.N. Evidence that a rapidly turning over protein, normally degraded by proteasomes, regulates hsp72 gene transcription in HepG2 cells. J. Biol. Chem. 271, 247–269 ( 1996)

    Google Scholar 

  18. Lee, D.H. & Goldberg, A.L. Proteasome Inhibitors Cause Induction of Heat Shock Proteins and Trehalose, Which Together Confer Thermotolerance in Saccharomyces cerevisiae. Mol. Cell. Biol. 18, 30–38 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bukau, B. & Horwich, A.L. The Hsp70 and Hsp60 Chaperone Machines . Cell 92, 351–366 (1998)

    Article  CAS  PubMed  Google Scholar 

  20. Lu, Z. & Cyr, D.M. The Conserved Carboxyl Terminus and Zinc Finger-Like Domain of the Co-chaperone Ydj1 Assist Hsp70 in Protein Folding . J. Biol. Chem. 273, 5970–5978 (1998)

    Article  CAS  PubMed  Google Scholar 

  21. Hartl, F.U. Molecular chaperones in cellular protein folding. Nature 381, 571–580 (1996)

    Article  CAS  PubMed  Google Scholar 

  22. Hendricks, J.P. & Hartl, F. -U.Molecular chaperone functions of heat shock proteins. Annu. Rev. Biochem. 62, 349–384 (1993)

    Article  Google Scholar 

  23. Sherman, M.Y. & Goldberg, A.L. Involvement of chaperonin dnaK in the rapid degradation of a mutant protein in Escherichia coli. EMBO J. 11, 71–77 ( 1992)

    CAS  Google Scholar 

  24. Straus, D.B., Walter, W.A. & Gross, C.A. Escherichia coli heat shock gene mutants are defective in proteolysis . Genes Dev. 2, 1851–1858 (1988)

    Article  CAS  PubMed  Google Scholar 

  25. Johnson, E.S., Bartel, B., Seufert, W. & Varshavsky, V. Ubiquitin as a degradation signal. EMBO J. 11, 497–505 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee, D.H., Sherman, M.Y. & Goldberg, A.L. Involvement of the Molecular Chaperone Ydj1 in the Ubiquitin-Dependent Degradation of Short-Lived and Abnormal Proteins in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 4773–4781 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Burright, E.N. et al. SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell 82, 937–948 (1995)

    Article  CAS  PubMed  Google Scholar 

  28. Attaix, D. et al. Expression of subunits of the 19S complex and of the PA28 activator in rat skeletal muscle. Mol. Biol. Rep. 24, 95–98 (1997)

    Article  CAS  PubMed  Google Scholar 

  29. Chellaiah, A., Davis, A. & Mohanakumar, T. Cloning of a unique human homologue of the Escherichia coli DANJ heat shock protein. Biochim. Biophys. Acta 1174, 111–113 (1993)

    Article  CAS  PubMed  Google Scholar 

  30. Oh, S., Iwahori, A. & Kato, S. Human cDNA encoding DnaJ protein homologue. Biochim. Biophys. Acta 1174, 114–116 ( 1993)

    Article  CAS  PubMed  Google Scholar 

  31. Cyr, D.M., Lu, X. & Douglas, M.G. Regulation of Hsp70 function by a eukaryotic DnaJ homolog. J. Biol. Chem. 267, 20927–20931 ( 1992)

    CAS  PubMed  Google Scholar 

  32. Tang, Y., Ramakrishnan, C., Thomas, J. & DeFranco, D.B. A Role for HDJ-2/HSDJ in Correcting Subnuclear Trafficking, Transactivation, and Transrepression Defects of a Glucocorticoid Receptor Zinc Finger Mutant. Mol. Biol. Cell 8, 795–809 ( 1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schirmer, E.C. & Lindquist, S. Interactions of the chaperone Hsp104 with yeast Sup35 and mammalian PrP. Proc. Natl. Acad. Sci. USA 94, 13932–13937 ( 1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. DebBurman, S.K., Raymond, G.J., Caughey, B. & Lindquist, S. Chaperone-supervised conversion of prion protein to its protease-resistant form. Proc. Natl. Acad. Sci. USA 94, 13938 –13943 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Welch, W.J. & Gambetti, P. Chaperoning Brain Diseases. Nature 392, 23–24 ( 1998)

    Article  CAS  PubMed  Google Scholar 

  36. Chernoff, Y.O., Lindquist, S.L., Ono, B., Inge-Vechtomov, S.G. & Liebman, S.W. Role of the Chaperone Protein Hsp104 in Propagation of the Yeast Prion-Like Factor [psi+]. Science 268, 880–883 (1995)

    Article  CAS  PubMed  Google Scholar 

  37. Cyr, D.M., Langer, T. & Douglas, M.G. DnaJ-like proteins: molecular chaperones and specific regulators of Hsp70 . Trends Biochem. Sci. 19, 176–181 (1994)

    Article  CAS  PubMed  Google Scholar 

  38. Dienel, G., Kiessling, M., Soubrie, P., Bockaert, J. & Pin, J. Synthesis of heat shock proteins in rat brain cortex after transient ischemia. J. Cereb. Blood Flow Metab. 6, 505–510 (1986)

    Article  CAS  PubMed  Google Scholar 

  39. Brown, I.R. Induction of heat shock (stress) genes in the mammalian brain by hyperthermia and other traumatic events: a current perspective. J. Neurosci. Res. 27, 247–255 (1990)

    Article  CAS  PubMed  Google Scholar 

  40. Cyr, D.M. Cooperation of the molecular chaperone Ydj1 with specific Hsp70 homologs to suppress protein aggregation. FEBS Lett. 359, 129–132 (1995)

    Article  CAS  PubMed  Google Scholar 

  41. Schumacher, R.J. et al. Cooperative action of Hsp70, Hsp90, and DnaJ proteins in protein renaturation . Biochemistry 35, 14889–14898 (1996)

    Article  CAS  PubMed  Google Scholar 

  42. Matilla, T. et al. The cerebellar leucine rich acidic nuclear protein interacts with ataxin-1 . Nature 389, 974–978 (1997)

    Article  CAS  PubMed  Google Scholar 

  43. Shibatani, T. & Ward, W.F. Sodium dodecyl sulfate (SDS) activation of the 20S proteasome in rat liver. Arch. Biochem. Biophys. 321, 160–166 (1995)

    Article  CAS  PubMed  Google Scholar 

  44. Servadio, A. et al. Expression analysis of the ataxin-1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals. Nature Genet. 10, 94–98 (1995)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W.F. Ward for the anti-proteasome antisera, G.N. DiMartino for anti-PA700 and anti-P31 antisera, J. K. Dunn for advice on statistical analyses, A.L. Beaudet, O.Lichtarge and W.E. O'Brien for their critical reading of the manuscript, and V. Brandt for her editorial help. This work is supported by grant from the National Institutes of Heath (NS27699 and NS22920) and by the Baylor Mental Retardation Research Center. H.Y.Z. is a Howard Hughes Medical Institute Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huda Y. Zoghbi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cummings, C., Mancini, M., Antalffy, B. et al. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 19, 148–154 (1998). https://doi.org/10.1038/502

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/502

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing