Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25

Abstract

A number of different eye disorders with the presence of early-onset glaucoma as a component of the phenotype have been mapped to human chromosome 6p25. These disorders have been postulated to be either allelic to each other or associated with a cluster of tightly linked genes. We have identified two primary congenital glaucoma (PCG) patients with chromosomal anomalies involving 6p25. In order to identify a gene involved in PCG, the chromosomal breakpoints in a patient with a balanced translocation between 6p25 and 13q22 were cloned. Cloning of the 6p25 breakpoint led to the identification of two candidate genes based on proximity to the breakpoint. One of these, FKHL7, encoding a forkhead transcription factor, is in close proximity to the breakpoint in the balanced translocation patient and is deleted in a second PCG patient with partial 6p monosomy. Furthermore, FKHL7 was found to harbour mutations in patients diagnosed with Rieger anomaly (RA), Axenfeld anomaly (AA) and iris hypoplasia (IH). This study demonstrates that mutations in FKHL7 cause a spectrum of glaucoma phenotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization of the 6p25 and 13q22 breakpoints.
Figure 2: Fine localization of the 6p25 breakpoint of the balanced translocation patient within the physical map of 6p25.
Figure 3: Sequence comparison between the normal chromosomes 6 and 13 and that obtained for the derivative 6 and 13 breakpoint junctions.
Figure 4: Fine localization of the 13q22 breakpoint of the balanced translocation patient within the physical map of 13q22.
Figure 5: Northern-blot analysis of mouse Fkhl7, Gmds and β-actin gene expression.
Figure 6: The pedigree structures of four families with anterior segment defects and mutations in FKHL7.
Figure 7: The genomic DNA sequence flanking the FKHL7 mutations in the families are shown.
Figure 8: Comparison of the forkhead domains of different members of the FKHL-family of genes.

Similar content being viewed by others

References

  1. Quigley, H.A. Number of people with glaucoma worldwide. Br. J. Ophthalmol. 80, 389–393 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Leske, M.C. The epidemiology of open-angle glaucoma: a review. Am. J. Epidemiol. 118, 166–191 (1983)

    Article  CAS  PubMed  Google Scholar 

  3. Sommer, A. et al. Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore Eye Survey. Arch. Ophthalmol. 109, 1090–1095 (1991)

    Article  CAS  PubMed  Google Scholar 

  4. Stone, E.M. et al. Identification of a gene that causes primary open angle glaucoma. Science 275, 668–670 ( 1997)

    Article  CAS  PubMed  Google Scholar 

  5. Stoilov, I., Akarsu, A.N. & Sarfarazi, M. Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum. Mol. Genet. 6, 641–647 (1997)

    Article  CAS  PubMed  Google Scholar 

  6. Semina, E.V. et al. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nature Genet. 14, 392–399 (1996)

    Article  CAS  PubMed  Google Scholar 

  7. Alward, W.L.M. et al. Autosomal Dominant Iris Hypoplasia Is Caused By a Mutation In the Rieger-Syndrome (Rieg/Pitx2) Gene. Am. J. Ophthalmol. 125, 98–100 (1998)

    Article  CAS  PubMed  Google Scholar 

  8. Akarsu, A.N. et al. A second locus (GLC3B) for primary congenital glaucoma (Buphthalmos) maps to the 1p36 region. Hum. Mol. Genet. 5, 1199–1203 (1996)

    Article  CAS  PubMed  Google Scholar 

  9. Phillips, J.C. et al. A second locus for Rieger syndrome maps to chromosome 13q14. Am. J. Hum. Genet. 59, 613–619 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Stoilova, D. et al. Localization of a locus (GLC1B) for adult-onset primary open angle glaucoma to the 2cen-q13 region. Genomics 36, 142 –150 (1996)

    Article  CAS  PubMed  Google Scholar 

  11. Wirtz, M.K. et al. Mapping a gene for adult-onset primary en-angle glaucoma to chromosome 3q . Am. J. Hum. Genet. 60, 296–304 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mears, A.J., Mirzayans, F., Gould, D.B., Pearce, W.G. & Walter, M.A. Autosomal dominant iridogoniodysgenesis anomaly maps to 6p25. Am. J. Hum. Genet. 59, 1321–1327 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gould, D.B., Mears, A.J., Pearce, W.G. & Walter, M.A. Autosomal dominant Axenfeld-Rieger anomaly maps to 6p25. Am. J. Hum. Genet. 61, 765–768 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jordan, T., Ebenezer, N., Manners, R., McGill, J. & Bhattacharya, S. Familial glaucoma iridogoniodysplasia maps to a 6p25 region implicated in primary congenital glaucoma and iridogoniodysgenesis anomaly. Am. J. Hum. Genet. 61, 882–888 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Graff, C., Jerndal, T. & Wadelius, C. Fine mapping of the gene For autosomal dominant juvenile-onset glaucoma with iridogoniodysgenesis In 6p25-Tel. Hum. Genet. 101, 130–134 (1997)

    Article  CAS  PubMed  Google Scholar 

  16. Alward, W.L.M., Johnson, A.T., Nishimura, D.Y., Sheffield, V.C. & Stone, E.M. Molecular genetics of glaucoma: current status. J. Glaucoma 5, 276–284 (1996)

    CAS  PubMed  Google Scholar 

  17. Murray, J.C. et al. A comprehensive human linkage map with centimorgan density. Cooperative Human Linkage Center (CHLC). Science 265, 2049 –2054 (1994)

    Article  CAS  PubMed  Google Scholar 

  18. Dorin, J.R. et al. Gene targeting for somatic cell manipulation: rapid analysis of reduced chromosome hybrids by Alu-PCR fingerprinting and chromosome painting. Hum. Mol. Genet. 1, 53–59 ( 1992)

    Article  CAS  PubMed  Google Scholar 

  19. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 ( 1990)

    Article  CAS  PubMed  Google Scholar 

  20. Gish, W. & States, D.J. Identification of protein coding regions by database similarity search. Nature Genet. 3, 266–272 (1993)

    Article  CAS  PubMed  Google Scholar 

  21. Currie, H.L., Lightfoot, J. & Lam, J.S. Prevalence of GCA, a gene involved in synthesis of A-band common antigen polysaccharide in Pseudomonas aeruginosa. Clin. Diagn. Lab. Immunol. 2, 554–562 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, Y. et al. Analysis of 43 kb of the Chlorella virus PBCV-1 330-kb genome: map positions 45 to 88. Virology 212, 134–150 (1995)

    Article  CAS  PubMed  Google Scholar 

  23. Stevenson, G., Andrianopoulos, K., Hobbs, M. & Reeves, P.R. Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J. Bacteriol. 178, 4885–4893 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bonin, C.P., Potter, I., Vanzin, G.F. & Reiter, W.D. The MUR1 gene of Arabidopsis thaliana encodes an isoform of GDP-D-mannose-4,6-dehydratase, catalyzing the first step in the de novo synthesis of GDP-L-fucose. Proc. Natl. Acad. Sci. USA 94, 2085–2090 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pierrou, S., Hellqvist, M., Samuelsson, L., Enerback, S. & Carlsson, P. Cloning and characterization of seven human forkhead proteins: binding site specificity and DNA bending. EMBO J. 13, 5002–5012 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Larsson, C. et al. Chromosomal localization of six human forkhead genes, freac-1 (FKHL5), -3 (FKHL7), -4 (FKHL8), -5 (FKHL9), -6 (FKHL10), and -8 (FKHL12). Genomics 30, 464–469 ( 1995)

    Article  CAS  PubMed  Google Scholar 

  27. Xu, Y., Mural, R., Shah, M. & Uberbacher, E. Recognizing exons in genomic sequence using GRAIL II. Genet. Engin. 16, 241–253 (1994)

    CAS  Google Scholar 

  28. Uberbacher, E.C. & Mural, R.J. Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc. Natl. Acad. Sci. USA 88, 11261–11265 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Glaser, T., Walton, D.S. & Maas, R.L. Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nature Genet. 2, 232–239 (1992)

    Article  CAS  PubMed  Google Scholar 

  30. Jordan, T. et al. The human PAX6 gene is mutated in two patients with aniridia. Nature Genet. 1, 328–332 (1992)

    Article  CAS  PubMed  Google Scholar 

  31. Kozak, M. Interpreting cDNA sequences: some insights from es on translation. Mamm. Genome 7, 563–574 (1996)

    Article  CAS  PubMed  Google Scholar 

  32. Kozak, M. Regulation of translation in eukaryotic systems. Annu. Rev. Cell Biol. 8, 197–225 (1992)

    Article  CAS  PubMed  Google Scholar 

  33. Attree, O. et al. The Lowe's oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase. Nature 358 , 239–242 (1992)

    Article  CAS  PubMed  Google Scholar 

  34. Fantes, J. et al. Aniridia-associated cytogenetic rearrangements suggest that a position effect may cause the mutant phenotype. Hum. Mol. Genet. 4, 415–422 (1995)

    Article  CAS  PubMed  Google Scholar 

  35. Milot, E., Fraser, P. & Grosveld, F. Position effects and genetic disease. Trends Genet. 12, 123–126 (1996)

    Article  CAS  PubMed  Google Scholar 

  36. Galili, N. et al. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma . Nature Genet. 5, 230–235 (1993)

    Article  CAS  PubMed  Google Scholar 

  37. Puck, J.M., Nussbaum, R.L. & Conley, M.E. Carrier detection in X-linked severe combined immunodeficiency based on patterns of X chromosome inactivation. J. Clin. Invest. 79, 1395–1400 ( 1987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nussbaum, R.L., Airhart, S.D. & Ledbetter, D.H. Expression of the fragile (X) chromosome in an interspecific somatic cell hybrid. Hum. Genet. 64, 148 –150 (1983)

    Article  CAS  PubMed  Google Scholar 

  39. Bassam, B.J., Caetano-Anolles, G. & Gresshoff, P.M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196, 80–83 (1991)

    Article  CAS  PubMed  Google Scholar 

  40. Hudson, T.J. et al. An STS-based map of the human genome. Science 270, 1945–1954 (1995)

    Article  CAS  PubMed  Google Scholar 

  41. Laitinen, J., Samarut, J. & Holtta, E. A nontoxic and versatile protein salting-out method for isolation of DNA. Biotechniques 17, 316, 318, 316–322 (1994)

    Google Scholar 

  42. Newton, C.R. et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 17, 2503 –2516 (1989)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Clark, K.L., Halay, E.D., Lai, E. & Burley, S.K. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364, 412–420 ( 1993)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the patients and their families for their participation in this study. We would also like to thank D. Crouch for family recruitment, G. Beck, S. Brown, R. Hockey, L. Law and N. Meyer for technical assistance, S. Fischer for cosmids in the 13q22 region and J. Lin for providing mouse embryos and adult tissues. This work was supported by a grant from the Knight's Templar Eye Foundation (D.Y.N.) and NIH grant R01-EY-10564 (V.C.S. and E.M.S.). We also thank the Roy J. Carver Charitable Trust and the Glaucoma Research Foundation for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Val C. Sheffield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishimura, D., Swiderski, R., Alward, W. et al. The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25. Nat Genet 19, 140–147 (1998). https://doi.org/10.1038/493

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/493

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing