Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular interactions on microarrays

Abstract

The structural features of nucleic acid probes tethered to a solid support and the molecular basis of their interaction with targets in solution have direct implications for the hybridization process. We discuss how arrays of oligonucleotides provide powerful tools to study the molecular basis of these interactions on a scale which is impossible using conventional analysis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The density of oligonucleotides on the surface is approximately 10 pmol per mm2 on aminated polypropylene, approximately 0.1 pmol per mm2 on glass after ammonia deprotection—–equivalent to one molecule per 39 square angstroms.
Figure 2: Long target sequences are likely to fold in on themselves as a result of intramolecular Watson–Crick base pairing.
Figure 3: Short targets are better able than large targets to interact with tethered oligonucleotides: they are less likely to have bases hidden from duplex formation by intramolecular base pairing; and, as they are less bulky, they will more readily penetrate the closely packed lawn of oligonucleotides.
Figure 4: A 32P–labelled RNA transcript of rat Ox40, encoding a cell surface glycoprotein, hybridized to a scanning array in 3.

Similar content being viewed by others

References

  1. Gillespie, D. & Spiegelman, S. A quantitative assay for DNA–RNA hybrids with DNA immobilised on a membrane. J. Mol. Biol. 12, 829–842 (1965).

    Article  CAS  Google Scholar 

  2. Ritossa, F., Malva, C., Boncinelli, E., Graziani, F. & Polito, L. The first steps of magnification of DNA complementary to ribosomal RNA in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 68, 1580– 1584 (1971).

    Article  CAS  Google Scholar 

  3. Birnstiel, M., Speirs, J., Purdom, I., Jones, K. & Loening, U.E. Properties and composition of the isolated ribosomal DNA satellite of Xenopus laevis. Nature 219, 454–463 (1968).

    Article  CAS  Google Scholar 

  4. Grunstein, M. & Hogness, D.S. Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc. Natl Acad. Sci. USA 72, 3961– 3965 (1975).

    Article  CAS  Google Scholar 

  5. Southern, E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503– 517 (1975).

    Article  CAS  Google Scholar 

  6. Kafatos, F.C., Jones, C.W. & Efstratiadis, A. Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucleic Acids Res. 24, 1541–1552 (1979).

    Article  Google Scholar 

  7. Lennon, G.G. & Lehrach, H. Hybridization analyses of arrayed cDNA libraries. Trends Genet. 7, 314– 317 (1991).

    Article  CAS  Google Scholar 

  8. Khrapko, K.R. et al. An oligonucleotide hybridization approach to DNA sequencing. FEBS Lett. 256, 118–122 (1989).

    Article  CAS  Google Scholar 

  9. Livshits, M.A. & Mirzabekov, A.D. Theoretical analysis of the kinetics of DNA hybridization with gel–immobilised oligonucleotides. Biophys. J. 71, 2795–2801 (1996).

    Article  CAS  Google Scholar 

  10. Duggan, D.J., Bittner, M., Chen, Y., Meltzer, P. & Trent, J. Expression profiling using cDNA microarrays. Nature Genet. 21, 10–14 (1999).

    Article  CAS  Google Scholar 

  11. Chakravarti, A. Population genetics—making sense out of sequence. Nature Genet. 21, 56–60 ( 1999).

    Article  CAS  Google Scholar 

  12. Milner, N., Mir, K.U. & Southern, E.M. Selecting effective antisense reagents on combinatorial. Nature Biotechnol. 15, 537– 541 (1997).

    Article  CAS  Google Scholar 

  13. Lipshutz, R.J., Fodor, S.P.A., Gingeras, T.R. & Lockhart, D.J. High density synthetic oligonucleotide arrays. Nature Genet. 21, 20–24 (1999).

    Article  CAS  Google Scholar 

  14. Blanchard, A.P., Kaiser, R.J. & Hood, L.E. Synthetic DNA arrays. Biosensors and Bioelectronics 11, 687–690 ( 1996).

    Article  CAS  Google Scholar 

  15. Maskos, U. & Southern, E.M. A novel method for the analysis of multiple sequence variants by hybridisation to oligonucleotide arrays. Nucleic Acid Res. 21, 2267– 2268 (1993).

    Article  CAS  Google Scholar 

  16. Southern, E.M., Maskos, U. & Elder, J.K. Analyzing and comparing nucleic acid sequences by hybridization toarrays of oligonucleotides: evaluation using experimental models. Genomics 13, 1008–1017 ( 1992).

    Article  CAS  Google Scholar 

  17. Maskos, U. & Southern, E.M. A study of oligonucleotide reassociation using large arrays of oligonucleotides synthesized on a glass support. Nucleic Acids Res. 21, 4663–4669 (1993).

    Article  CAS  Google Scholar 

  18. Southern, E.M. et al. Arrays of complementary oligonucleotides for analysing the hybridisation behaviour of nucleic acids. Nucleic Acids Res. 22, 1368–1373 (1994).

    Article  Google Scholar 

  19. Gray, D.E., Case–Green, S.C., Fell, T.S., Dobson, P.J. & Southern, E.M. Ellipsometric and interferometric characterization of DNA probes immobilised on a combinatorial array. Langmuir 13, 2833–2842 ( 1997).

    Article  CAS  Google Scholar 

  20. Guo, Z., Guilfoyle, R.A., Thiel, A.J., Wang, R. & Smith, L.M. Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucleic Acids Res. 22, 5456– 5465 (1994).

    Article  CAS  Google Scholar 

  21. Duggan, D.J., Bittner, M., Chen, Y., Meltzer, P. & Trent, J. Expression profiling using cDNA microarrays. Nature Genet. 21, 10–14 (1999).

    Article  CAS  Google Scholar 

  22. Cheung, V.G. et al. Making and reading microarrays. Nature Genet. 21, 15–19 (1999).

    Article  CAS  Google Scholar 

  23. Maskos, U. & Southern, E.M. Oligonucleotide hybridizations on glass supports: a novel linker for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesized in situ. Nucleic Acids Res. 20, 1679–1684 (1992).

    Article  CAS  Google Scholar 

  24. Matson, R.S., Rampal, J., Pentoney, S.L. Jr., Anderson, P.D. & Coassin, P. Biopolymer synthesis on polypropylene supports: oligonucleotide arrays. Anal. Biochem 224, 110–106 ( 1995).

    Article  CAS  Google Scholar 

  25. Shchepinov, M.S., Case–Green, S.C. & Southern, E.M. Steric factors influencing hybridisation of nucleic acids to oligonucleotide arrays. Nucleic Acid Res. 25, 1155–1161 (1997).

    Article  CAS  Google Scholar 

  26. Williams, J.C., Case–Green, S.C., Mir, K.U. & Southern, E.M. Studies of oligonucleotide interactions by hybridisation to arrays: the influence of dangling ends on duplex yield. Nucleic Acids Res. 22, 1365–1367 (1994).

    Article  Google Scholar 

  27. Maskos, U. & Southern, E.M. Parallel analysis of oligodeoxyribonucleotide (oligonucleotide) interactions. I. Analysis of factors influencing oligonucleotide duplex formation. Nucleic Acids Res. 20, 1675–1678 (1992).

    Article  CAS  Google Scholar 

  28. Wood, W.I., Gitschier, J., Laskey, L.A. & Lawn, R.M. Base composition–independent hybridization in tetramethylammonium chloride: A method for oligonucleotide screening of highly complex gene libraries. Proc. Natl Acad. Sci. USA. 82, 1585– 1588 (1985).

    Article  CAS  Google Scholar 

  29. Jacobs, K.A. et al. The thermal stability of oligonucleotide duplexes is sequence independent in tetraalkylammonium salt solutions: application to identifying recombinant DNA clones. Nucleic Acids Res. 16, 4637–4650 (1988).

    Article  CAS  Google Scholar 

  30. Mir, K.U. Novel approaches for the analysis of nucleic acids. (D. Phil. thesis, Oxford University 1995).

  31. Wetmur, J.G. & Davidson, N. Kinetics of renaturation of DNA. J. Mol. Biol. 31, 349– 370 (1968).

    Article  CAS  Google Scholar 

  32. Nikiforov, T.T. et al. Genetic bit analysis: a solid phase method for typing single nucleotide polymorphisms. Nucleic Acids Res. 22, 4167–4175 (1994).

    Article  CAS  Google Scholar 

  33. Shchepinov, M.S., Udalova, I.A., Bridgman, A.J. & Southern, E.M. Oligonucleotide dendrimers: synthesis and use as polylabelled DNA probes. Nucleic Acid Res. 25, 4447– 4454 (1997).

    Article  CAS  Google Scholar 

  34. Pastinen, T., Kurg, A., Metspalu, A., Peltonen, L. & Syvanen, A.C. Minisequencing: a specific tool for DNA analysis and diagnostics on oligonucleotide arrays. Genome Res. 7, 606–614 (1997).

    Article  CAS  Google Scholar 

  35. Nickerson, D.A., Kaiser, R., Lappin, S., Stewart, J. & Hood, L. Automated DNA diagnostics using an ELISA–based oligonucleotide ligation assay. Proc. Natl Acad. Sci. USA 87, 8923–8927 (1990).

    Article  CAS  Google Scholar 

  36. Landegren, U., Kaiser, R., Sanders, J. & Hood, L. A ligase–mediated gene detection technique. Science 241, 1077 –1080 (1988).

    Article  CAS  Google Scholar 

  37. Fotin, A.V., Drobyshev, A.L., Proudnikov, D.Y., Perov, A.N. & Mirzabekov, A.D. Parallel thermodynamic analysis of duplexes on oligodeoxyribonucleotide microchips. Nucleic Acids Res. 26, 1515–1521 ( 1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Southern, E., Mir, K. & Shchepinov, M. Molecular interactions on microarrays. Nat Genet 21 (Suppl 1), 5–9 (1999). https://doi.org/10.1038/4429

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/4429

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing