Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Alternative pre-mRNA splicing and proteome expansion in metazoans

Abstract

The protein coding sequences of most eukaryotic messenger RNA precursors (pre-mRNAs) are interrupted by non-coding sequences called introns. Pre-mRNA splicing is the process by which introns are removed and the protein coding elements assembled into mature mRNAs. Alternative pre-mRNA splicing selectively joins different protein coding elements to form mRNAs that encode proteins with distinct functions, and is therefore an important source of protein diversity. The elaboration of this mechanism may have had a significant role in the expansion of metazoan proteomes during evolution.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Exon recognition.
Figure 2: Regulation of alternative pre-mRNA splicing in the Drosophila sex-determination pathway.
Figure 3: Inducible alternative splicing of rat Slo pre-mRNA.
Figure 4: Alternative trans-splicing in mammals and flies.

Similar content being viewed by others

References

  1. Quelle, D. E., Zindy, F., Ashmun, R. A. & Sherr, C. J. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83, 993–1000 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Black, D. L. Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell 103, 367–370 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Graveley, B. R. Alternative splicing: increasing diversity in the proteomic world. Trends Genet. 17, 100–107 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Goldstrohm, A. C., Greenleaf, A. L. & Garcia-Blanco, M. A. Co-transcriptional splicing of pre-messenger RNAs: considerations for the mechanism of alternative splicing. Gene 277, 31–47 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Caceres, J. F. & Kornblihtt, A. R. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet. 18, 186–193 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Gautheret, D., Poirot, O., Lopez, F., Audic, S. & Claverie, J. M. Alternate polyadenylation in human mRNAs: a large-scale analysis by EST clustering. Genome Res. 8, 524–530 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Keegan, L. P., Gallo, A. & O'Connell, M. A. The many roles of an RNA editor. Nature Rev. Genet. 2, 869–878 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Banks, R. E. et al. Proteomics: new perspectives, new biomedical opportunities. Lancet 356, 1749–1756 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Reed, R. Mechanisms of fidelity in pre-mRNA splicing. Curr. Opin. Cell Biol. 12, 340–345 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Stevens, S. W. et al. Composition and functional characterization of the yeast spliceosomal penta-snRNP. Mol. Cell 9, 31–44 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Zhou, Z., Licklider, L., Gygi, S. & Reed, R. The proteome of functional human spliceosomes. Nature (submitted).

  12. Staley, J. P. & Guthrie, C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92, 315–326 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Berget, S. M. Exon recognition in vertebrate splicing. J. Biol. Chem. 270, 2411–2414 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Reed, R. Initial splice-site recognition and pairing during pre-mRNA splicing. Curr. Opin. Genet. Dev. 6, 215–220 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Deutsch, M. & Long, M. Intron-exon structures of eukaryotic model organisms. Nucleic Acids Res. 27, 3219–3228 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rowen, L. et al. Analysis of the human neurexin genes: alternative splicing and the generation of protein diversity. Genomics 79, 587–597 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Graveley, B. R. Sorting out the complexity of SR protein functions. RNA 6, 1197–1211 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schaal, T. D. & Maniatis, T. Multiple distinct splicing enhancers in the protein-coding sequences of a constitutively spliced pre-mRNA. Mol. Cell. Biol. 19, 261–273 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mayeda, A., Screaton, G. R., Chandler, S. D., Fu, X. D. & Krainer, A. R. Substrate specificities of SR proteins in constitutive splicing are determined by their RNA recognition motifs and composite pre-mRNA exonic elements. Mol. Cell. Biol. 19, 1853–1863 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun, H. & Chasin, L. A. Multiple splicing defects in an intronic false exon. Mol. Cell. Biol. 20, 6414–6425 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. Nature 416, 499–506 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Cartegni, L., Chew, S. L. & Krainer, A. R. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nature Rev. Genet. 3, 285–298 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Krawczak, M., Reiss, J. & Cooper, D. N. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum. Genet. 90, 41–54 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Valentine, C. R. The association of nonsense codons with exon skipping. Mutat. Res. 411, 87–117 (1998).

    Article  PubMed  Google Scholar 

  25. Liu, H. X., Cartegni, L., Zhang, M. Q. & Krainer, A. R. A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes. Nature Genet. 27, 55–58 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Blencowe, B. J. Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases. Trends Biochem. Sci. 25, 106–110 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Hastings, M. L. & Krainer, A. R. Pre-mRNA splicing in the new millennium. Curr. Opin. Cell Biol. 13, 302–309 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Smith, C. W. & Valcarcel, J. Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem. Sci. 25, 381–388 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Perez-Canadillas, J. M. & Varani, G. Recent advances in RNA-protein recognition. Curr. Opin. Struct. Biol. 11, 53–58 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Graveley, B. R., Hertel, K. J. & Maniatis, T. SR proteins are 'locators' of the RNA splicing machinery. Curr. Biol. 9, R6–R7 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Zhu, J., Mayeda, A. & Krainer, A. R. Exon identity established through differential antagonism between exonic splicing silencer-bound hnRNP A1 and enhancer-bound SR proteins. Mol. Cell 8, 1351–1361 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Wagner, E. J. & Garcia-Blanco, M. A. Polypyrimidine tract binding protein antagonizes exon definition. Mol. Cell. Biol. 21, 3281–3288 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dreyfuss, G., Matunis, M. J., Pinol-Roma, S. & Burd, C. G. hnRNP proteins and the biogenesis of mRNA. Annu. Rev. Biochem. 62, 289–321 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Krecic, A. M. & Swanson, M. S. hnRNP complexes: composition, structure, and function. Curr. Opin. Cell Biol. 11, 363–371 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Cowper, A. E., Caceres, J. F., Mayeda, A. & Screaton, G. R. Serine-arginine (SR) protein-like factors that antagonize authentic SR proteins and regulate alternative splicing. J. Biol. Chem. 276, 48908–48914 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Cramer, P. et al. Coupling of transcription with alternative splicing: RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer. Mol. Cell 4, 251–258 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Schutt, C. & Nothiger, R. Structure, function and evolution of sex-determining systems in Dipteran insects. Development 127, 667–677 (2000).

    CAS  PubMed  Google Scholar 

  38. Baker, B. S. Sex in flies: the splice of life. Nature 340, 521–524 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Cline, T. W. & Meyer, B. J. Vive la différence: males vs females in flies vs worms. Annu. Rev. Genet. 30, 637–702 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Lallena, M. J., Chalmers, K. J., Llamazares, S., Lamond, A. I. & Valcarcel, J. Splicing regulation at the second catalytic step by Sex-lethal involves 3′ splice site recognition by SPF45. Cell 109, 285–296 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Lynch, K. W. & Maniatis, T. Assembly of specific SR protein complexes on distinct regulatory elements of the Drosophila doublesex splicing enhancer. Genes Dev. 10, 2089–2101 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Hertel, K. J. & Maniatis, T. The function of multisite splicing enhancers. Mol. Cell 1, 449–455 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Grabowski, P. J. & Black, D. L. Alternative RNA splicing in the nervous system. Prog. Neurobiol. 65, 289–308 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Lisbin, M. J., Qiu, J. & White, K. The neuron-specific RNA-binding protein ELAV regulates neuroglian alternative splicing in neurons and binds directly to its pre-mRNA. Genes Dev. 15, 2546–2561 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dredge, B. K., Polydorides, A. D. & Darnell, R. B. The splice of life: alternative splicing and neurological disease. Nature Rev. Neurosci. 2, 43–50 (2001).

    Article  CAS  Google Scholar 

  46. Toba, G., Qui, J., Koushika, S. P. & White, K. Ectopic expression of Drosophila ELAV and human HuD in Drosophila wing disc cells reveals functional distinctions and similarities. J. Cell Sci. 115, 2413–2421 (2002).

    CAS  PubMed  Google Scholar 

  47. Van Buskirk, C. & Schupbach, T. half pint regulates alternative splice site selection in Drosophila. Dev. Cell 2, 343–353 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Page-McCaw, P. S., Amonlirdviman, K. & Sharp, P. A. PUF60: a novel U2AF65-related splicing activity. RNA 5, 1548–1560 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Poleev, A., Hartmann, A. & Stamm, S. A trans-acting factor, isolated by the three-hybrid system, that influences alternative splicing of the amyloid precursor protein minigene. Eur. J. Biochem. 267, 4002–4010 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Labourier, E., Adams, M. D. & Rio, D. C. Modulation of P-element pre-mRNA splicing by a direct interaction between PSI and U1 snRNP 70K protein. Mol. Cell 8, 363–373 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Min, H., Turck, C. W., Nikolic, J. M. & Black, D. L. A new regulatory protein, KSRP, mediates exon inclusion through an intronic splicing enhancer. Genes Dev. 11, 1023–1036 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Lynch, K. W. & Weiss, A. A model system for activation-induced alternative splicing of CD45 pre-mRNA in T cells implicates protein kinase C and Ras. Mol. Cell. Biol. 20, 70–80 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. ten Dam, G. B. et al. Regulation of alternative splicing of CD45 by antagonistic effects of SR protein splicing factors. J. Immunol. 164, 5287–5295 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, H. Y., Xu, X., Ding, J. H., Bermingham, J. R. Jr & Fu, X. D. SC35 plays a role in T cell development and alternative splicing of CD45. Mol. Cell 7, 331–342 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Daoud, R., Da Penha Berzaghi, M., Siedler, F., Hubener, M. & Stamm, S. Activity-dependent regulation of alternative splicing patterns in the rat brain. Eur. J. Neurosci. 11, 788–802 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Hofmann, Y., Lorson, C. L., Stamm, S., Androphy, E. J. & Wirth, B. Htra2-β1 stimulates an exonic splicing enhancer and can restore full-length SMN expression to survival motor neuron 2 (SMN2). Proc. Natl Acad. Sci. USA 97, 9618–9623 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Berke, J. D. et al. Dopamine and glutamate induce distinct striatal splice forms of Ania-6, an RNA polymerase II-associated cyclin. Neuron 32, 277–287 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Xie, J. & Black, D. L. A CaMK IV responsive RNA element mediates depolarization-induced alternative splicing of ion channels. Nature 410, 936–939 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Black, D. L. Splicing in the inner ear: a familiar tune, but what are the instruments? Neuron 20, 165–168 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Nilsen, T. W. Evolutionary origin of SL-addition trans-splicing: still an enigma. Trends Genet. 17, 678–680 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Blumenthal, T. Trans-splicing and polycistronic transcription in Caenorhabditis elegans. Trends Genet. 11, 132–136 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Eul, J., Graessmann, M. & Graessmann, A. Experimental evidence for RNA trans-splicing in mammalian cells. EMBO J. 14, 3226–3235 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Caudevilla, C. et al. Heterologous HIV-nef mRNA trans-splicing: a new principle how mammalian cells generate hybrid mRNA and protein molecules. FEBS Lett. 507, 269–279 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Caudevilla, C. et al. Natural trans-splicing in carnitine octanoyltransferase pre-mRNAs in rat liver. Proc. Natl Acad. Sci. USA 95, 12185–12190 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Takahara, T., Kanazu, S. I., Yanagisawa, S. & Akanuma, H. Heterogeneous Sp1 mRNAs in human HepG2 cells include a product of homotypic trans-splicing. J. Biol. Chem. 275, 38067–38072 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Frantz, S. A. et al. Exon repetition in mRNA. Proc. Natl Acad. Sci. USA 96, 5400–5405 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Akopian, A. N. et al. Trans-splicing of a voltage-gated sodium channel is regulated by nerve growth factor. FEBS Lett. 445, 177–182 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Caudevilla, C. et al. Localization of an exonic splicing enhancer responsible for mammalian natural trans-splicing. Nucleic Acids Res. 29, 3108–3115 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vellard, M. et al. C-myb proto-oncogene: evidence for intermolecular recombination of coding sequences. Oncogene 6, 505–514 (1991).

    CAS  PubMed  Google Scholar 

  70. Sullivan, P. M., Petrusz, P., Szpirer, C. & Joseph, D. R. Alternative processing of androgen-binding protein RNA transcripts in fetal rat liver. Identification of a transcript formed by trans splicing. J. Biol. Chem. 266, 143–154 (1991).

    CAS  PubMed  Google Scholar 

  71. Li, B. L. et al. Human acyl-CoA:cholesterol acyltransferase-1 (ACAT-1) gene organization and evidence that the 4.3-kilobase ACAT-1 mRNA is produced from two different chromosomes. J. Biol. Chem. 274, 11060–11071 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Hirayama, T., Sugino, H. & Yagi, T. Somatic mutations of synaptic cadherin (CNR family) transcripts in the nervous system. Genes Cells 6, 151–164 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Shimizu, A. & Honjo, T. Synthesis and regulation of trans-mRNA encoding the immunoglobulin epsilon heavy chain. FASEB J. 7, 149–154 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. Fujieda, S., Lin, Y. Q., Saxon, A. & Zhang, K. Multiple types of chimeric germ-line Ig heavy chain transcripts in human B cells: evidence for trans-splicing of human Ig RNA. J. Immunol. 157, 3450–3459 (1996).

    CAS  PubMed  Google Scholar 

  75. Chatterjee, T. K. & Fisher, R. A. Novel alternative splicing and nuclear localization of human RGS12 gene products. J. Biol. Chem. 275, 29660–29671 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Finta, C. & Zaphiropoulos, P. G. Intergenic mRNA molecules resulting from trans-splicing. J. Biol. Chem. 277, 5882–5890 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Labrador, M. et al. Protein encoding by both DNA strands. Nature 409, 1000 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Dorn, R., Reuter, G. & Loewendorf, A. Transgene analysis proves mRNA trans-splicing at the complex mod(mdg4) locus in Drosophila. Proc. Natl Acad. Sci. USA 98, 9724–9729 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rubin, G. M. et al. Comparative genomics of the eukaryotes. Science 287, 2204–2215 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  81. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  82. Daly, M. Estimating the human gene count. Cell 109, 283–284 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Davidson, E. H. Genomic Regulatory Systems (Academic, New York, 2001).

    Google Scholar 

  84. Suzuki, Y., Yamashita, R., Nakai, K. & Sugano, S. DBTSS: DataBase of human transcriptional start sites and full-length cDNAs. Nucleic Acids Res. 30, 328–331 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bono, H., Kasukawa, T., Furuno, M., Hayashizaki, Y. & Okazaki, Y. FANTOM DB: database of functional annotation of RIKEN mouse cDNA clones. Nucleic Acids Res. 30, 116–118 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kristiansen, T. Z. & Pandey, A. Resources for full-length cDNAs. Trends Biochem. Sci. 27, 266–267 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Sorek, R. & Amitai, M. Piecing together the significance of splicing. Nature Biotechnol. 19, 196 (2001).

    Article  CAS  Google Scholar 

  88. Modrek, B. & Lee, C. A genomic view of alternative splicing. Nature Genet. 30, 13–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Hu, G. K. et al. Predicting splice variant from DNA chip expression data. Genome Res. 11, 1237–1245 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shoemaker, D. D. et al. Experimental annotation of the human genome using microarray technology. Nature 409, 922–927 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  91. Yeakly, J. M. et al. Profiling alternative splicing on fiber optic arrays. Nature Biotechnol. 20, 1–6 (2002).

    Article  CAS  Google Scholar 

  92. Brett, D., Pospisil, H., Valcarcel, J., Reich, J. & Bork, P. Alternative splicing and genome complexity. Nature Genet. 30, 29–30 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Schmucker, D. et al. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101, 671–684 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Missler, M. & Sudhof, T. C. Neurexins: three genes and 1001 products. Trends Genet. 14, 20–26 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Ptashne, M. & Gann, A. Genes & Signals (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2002).

    Google Scholar 

  96. Reed, R. & Hurt, E. A Conserved mRNA export machinery coupled to pre-mRNA splicing. Cell 108, 523–531 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Cramer, B. Graveley, A. Krainer, C. Nabholz and R. Reed for their comments on the manuscript, and R. Hellmiss for the illustrations.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maniatis, T., Tasic, B. Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 418, 236–243 (2002). https://doi.org/10.1038/418236a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/418236a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing