Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transactivation of Igf2 in a mouse model of Beckwith–Wiedemann syndrome

Abstract

The gene IGF2, which encodes a fetal insulin-like growth factor, is imprinted, so only one of two parental copies of the gene is expressed. The altered expression of IGF2 has been implicated in Beckwith–Wiedemann syndrome, a human fetal overgrowth syndrome, which is characterized by overgrowth of several organs and an increased risk of developing childhood tumours. We have introduced Igf2 transgenes into the mouse genome by using embryonic stem cells, which leads to transactivation of the endogenous Igf2 gene. The consequent overexpression of Igf2 results in most of the symptoms of Beckwith–Wiedemann syndrome, including prenatal overgrowth, polyhydramnios, fetal and neonatal lethality, disproportionate organ overgrowth including tongue enlargement, and skeletal abnormalities. These phenotypes establish Igf2 overexpression as a key determinant of Beckwith–Wiedemann syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Introduction and expression of Igf2 transgene construct in ES cells.
Figure 2: Fetal and postnatal overgrowth in transgenic chimaeras.
Figure 3: Disproportionate organ overgrowth in transgenic chimaeras.
Figure 4: Overexpression of Igf2 mRNA in transgenic chimaeras.
Figure 5: RNase protection assays to distinguish transgenic and endogenous Igf2 transcripts.
Figure 6: Methylation of DMR2 in transgenic and endogenous Igf2.

Similar content being viewed by others

References

  1. De Chiara, T. M., Efstratiadis, A. & Robertson, E. J. Agrowth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor-II gene disrupted by targeting. Nature 345, 78–80 (1990).

    Article  ADS  CAS  Google Scholar 

  2. DeChiara, T. M., Robertson, E. J. & Efstratiadiss, A. Parental imprinting of the mouse insulin-like growth factor-II gene. Cell 64, 849–859 (1991).

    Article  CAS  Google Scholar 

  3. Reik, W. & Maher, E. R. Imprinting in clusters: lessons from Beckwith–Wiedemann syndrome. Trends Genet. 13, 330–334 (1997).

    Article  CAS  Google Scholar 

  4. Leighton, P. A., Saam, J. R., Ingram, R. S., Stewart, C. L. & Tilghman, S. M. An enhancer deletion affects both H19 and IGF2 expression. Genes Dev. 9, 2079–2089 (1995).

    Article  CAS  Google Scholar 

  5. Leighton, P. A., Ingram, R. S., Eggenschwiler, J., Efstratiadis, A. & Tilghman, S. M. Disruption of imprinting caused by deletion of the H19 region in mice. Nature 375, 34–39 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Ripoche, M. A., Kress, C., Pirier, F. & Dandolo, L. Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes. Dev. 11, 1596–1604 (1997).

    Article  CAS  Google Scholar 

  7. Sasaki, H. et al. Parental imprinting–potentially active chromatin of the repressed maternal allele of the mouse insulin-like growth factor-II (IGF2) gene. Genes Dev. 6, 1843–1856 (1992).

    Article  CAS  Google Scholar 

  8. Feil, R., Walter, J., Allen, N. D. & Reik, W. Development control of allelic methylation in the imprinted mouse IGF2 and H19 genes. Development 120, 2933–2943 (1994).

    CAS  PubMed  Google Scholar 

  9. Walter, J. et al. in Epigenetic Mechanisms of Gene Regulation(eds Russo, V. E. A., Martienssen, R. A. & Riggs, A. D.) 195–213 (Cold Spring Harbor Laboratory Press, NY, (1996)).

    Google Scholar 

  10. Ward, A. et al. Genomic regions regulating imprinting and insulin-like growth factor-II promoter 3 activity in transgenics: novel enhancer and silencer elements. Genes Funct. 1, 25–36 (1997).

    Article  CAS  Google Scholar 

  11. Feinberg, A. P. Genomic imprinting and gene activation in cancer. Nature Genet. 4, 110–113 (1993).

    Article  CAS  Google Scholar 

  12. Bates, P. et al. Mammary-cancer in transgenic mice expressing insulin-like growth-factor II (IGFII). Brit. J. Cancer 72, 1189–1193 (1995).

    Article  CAS  Google Scholar 

  13. Christofori, G., Naik, P. & Hanahan, D. A. Asecond signal supplied by insulin-like growth factor II in oncogene-induced tumorigenesis. Nature 369, 414–418 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Rogler, C. E. et al. Altered body composition and increased frequency of diverse malignancies in insulin-like growth factor II transgenic mice. J. Biol. Chem. 269, 13779–13784 (1994).

    CAS  PubMed  Google Scholar 

  15. Elliott, M. & Maher, E. R. Beckwith–Wiedemann syndrome. J. Med. Genet. 31, 560–564 (1994).

    Article  CAS  Google Scholar 

  16. Weksberg, R., Shen, D. R., Fei, Y. L., Song, Q. L. & Squire, J. Disruption of insulin-like growth factor-II imprinting in Beckwith–Weidemann syndrome. Nature Genet. 5, 143–150 (1994).

    Article  Google Scholar 

  17. Joyce, J. A. et al. Imprinting of Igf2 and H19: Lack of reciprocity in sporadic Beckwith–Wiedemann syndrome. Hum. Mol. Genet. 6, 1543–1548 (1997).

    Article  CAS  Google Scholar 

  18. Reik, W. et al. Imprinting mutations in the Beckwith–Wiedemann syndrome suggested by an altered imprinting pattern in the IGF2–H19 domain. Hum. Mol. Genet. 4, 2379–2385 (1995).

    Article  CAS  Google Scholar 

  19. Brown, K. W. et al. Imprinting mutation in the Beckwith-Wiedemann syndrome leads to biallelic IGF2 expression through an H19-independent pathway. Hum. Mol. Genet. 5, 2027–2032 (1996).

    Article  CAS  Google Scholar 

  20. Lee, M. P., Hu, R. J., Johnson, L. A. & Feinberg, A. P. Human KvLQT1 gene shows tissue-specific imprinting and encompasses Beckwith–Wiedemann syndrome chromosomal rearrangements. Nature Genet. 15, 181–185 (1997).

    Article  Google Scholar 

  21. Hatada, I. et al. An imprinted gene p57Kip2 is mutated in Beckwith–Wiedemann syndrome. Nature Genet. 14, 171–173 (1996).

    Article  CAS  Google Scholar 

  22. Zhang, P. et al. Altered cell differentiation and proliferation in mice lacking p57Kip2 indicates a role in Beckwith–Wiedemann syndrome. Nature 387, 151–158 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Yan, Y., Frisén, J., Lee, M. H., Massagué, J. & Barbacid, M. Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev. 11, 973–983 (1997).

    Article  CAS  Google Scholar 

  24. Lau, M. M. H. et al. Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality. Genes Dev. 8, 2953–2963 (1994).

    Article  CAS  Google Scholar 

  25. Wang, Z. Q., Fun, M. R., Barlow, D. P. & Wagner, E. F. Regulation of embryonic growth and lysosomal targeting by the imprinted IGF2/MPR gene. Nature 372, 464–467 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Ludwig, T. et al. Mouse mutants lacking the type-2 IGF receptor (IGF2R) are rescued from perinatal lethality in IGF2 and IGF1R null backgrounds. Dev. Biol. 177, 517–535 (1996).

    Article  CAS  Google Scholar 

  27. Ferguson-Smith, A. C., Cattanach, B. M., Barton, S. C., Beechey, C. V. & Surani, M. A. Embryological and molecular investigations of parental imprinting on mouse chromosome 7. Nature 351, 667–670 (1991).

    Article  ADS  CAS  Google Scholar 

  28. Lee, J. E., Trantrahavi, U., Boyle, A. L. & Efstratiadiss, A. Parental imprinting of an IGF2 transgene. Mol. Reprod. Dev. 35, 382–390 (1993).

    Article  CAS  Google Scholar 

  29. Hedborg, F., Holmgren, L., Sandstedt, B. & Ohlsson, R. The cell-type specific IGF2 expression during early human development correlates to the pattern of overgrowth and neoplasia in the Beckwith–Wiedemann syndrome. Am. J. Pathol. 145, 802–817 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Schneid, H. et al. Parental allele-specific methylation of the human insulin-like growth factor II gene and Beckwith–Wiedemann syndrome. J. Med. Genet. 30, 353–362 (1993).

    Article  CAS  Google Scholar 

  31. Slatter, R. E. et al. Mosaic uniparental disomy in Beckwith–Wiedemann syndrome. J. Med. Genet. 31, 749–753 (1994).

    Article  CAS  Google Scholar 

  32. Morison, I. M., Becroft, D. M., Taniguchi, T., Woods, C. G. & Reeve, A. E. Somatic overgrowth associated with overexpression of insulin-like growth factor II. Nature Med. 2, 311–316 (1996).

    Article  CAS  Google Scholar 

  33. Pilia, G. et al. Mutations in GPC3, a glypican gene, cause the Simpson–Golabi–Behmel overgrowth syndrome. Nature Genet. 12, 241–247 (1996).

    Article  CAS  Google Scholar 

  34. McLaughlin, K. J., Szabo, P., Haegel, H. & Mann, J. R. Mouse embryos with paternal duplication of an imprinted chromosome 7 region die at midgestation and lack placental spongiotrophoblast. Development 122, 265–270 (1996).

    CAS  PubMed  Google Scholar 

  35. Shemer, R. et al. Dynamic methylation adjustment and counting as part of imprinting mechanisms. Proc. Natl Acad. Sci. USA 93, 6371–6376 (1996).

    Article  ADS  CAS  Google Scholar 

  36. Hatada, I. et al. Aberrant methylation of an imprinted gene U2af1-rs1 caused by its own transgene. J. Biol. Chem. 272, 9120–9122 (1997).

    Article  CAS  Google Scholar 

  37. Lee, J. T. & Jaenisch, R. Long-range cis effects of ectopic X-inactivation centres on a mouse autosome. Nature 386, 272–275 (1997).

    Article  ADS  Google Scholar 

  38. Herzing, L. B. K., Romer, J. T., Horn, J. M. & Ashworth, A. Xist has properties of the X-chromosome inactivation centre. Nature 386, 272–275 (1997).

    Article  ADS  CAS  Google Scholar 

  39. Sasaki, H. et al. Nucleotide sequence of a 28 kb mouse genomic region comprising the imprinted Igf2 gene. DNA Res. 3, 331–335 (1996).

    Article  CAS  Google Scholar 

  40. Rotwein, P. & Hall, L. J. Evolution of insulin-like growth factor II: characterisation of the mouse Igf2 gene and identification of two pseudo-exons. DNA Cell Biol. 9, 725–735 (1990).

    Article  CAS  Google Scholar 

  41. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual(Cold Spring Harbor Laboratory Press, NY, (1989)).

    Google Scholar 

  42. Robertson, E. J. in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach(ed. Robertson, E. J.) 71–112 (IRL, Oxford, (1987)).

    Google Scholar 

  43. Melton, D. A. et al. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12, 7035–7056 (1984).

    Article  CAS  Google Scholar 

  44. Ward, A. & Elliss, C. in The Insulin-like Growth Factors: Structure and Biological Functions(ed. Schofield, P.) 45–70 (Oxford Univ. Press, (1992)).

    Google Scholar 

Download references

Acknowledgements

We thank D. Brown, J. Walter, J. Oswald, E. Maher, D. Hill, S. Fleming, J. Pell, A. Murrell and E. Grau for help and advice, and D. Styles, L. Notton and D. Powell for the preparation of manuscript and figures. This work is supported by Action Research, BBSRC, MRC and MAFF. G.K. is a senior fellow of the MRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolf Reik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, FL., Dean, W., Kelsey, G. et al. Transactivation of Igf2 in a mouse model of Beckwith–Wiedemann syndrome. Nature 389, 809–815 (1997). https://doi.org/10.1038/39797

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/39797

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing