Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Drosophila CBP is a co-activator of cubitus interruptus in hedgehog signalling

Abstract

The transcription factor CBP, originally identified as a coactivator for CREB1,2, enhances transcription mediated by many other transcription factors3–7. Mutations in the human CBP gene are associated with Rubinstein–Taybi syndrome, a haploinsufficiency disorder characterized by abnormal pattern formation8, but the mechanism by which decreased CBP levels affect pattern formation is unclear. The hedgehog (hh) signalling pathway is an important determinant of pattern formation, cubitus interruptus (ci), a component in hh signalling, encodes a transcription factor homologous to the Gli family of proteins9 and is required for induction of the hh-dependent expression of patched (ptc), decapentaplegic (dpp) and wingless (wg)10. Haploinsufficiency for the ci-related transcription factor Gli3 causes phenotypic changes in mice (known as 'extra-toes)11 and humans (Greig's cephalopolysyndactyly syndrome)12 that have similarities to Rubinstein-Taybi syndrome. Here we show that Drosophila CBP (dCBP) functions as a coactivator of Ci, suggesting that the dCBP-Ci interaction may shed light on the contribution of CBP to pattern formation in mammals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chrivia, J. C. et al. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365, 855–859 ( 1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Kwok, R. P. S. et al. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370, 223–226 ( 1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Arias, J. et al. Activation of cAMP and mitogen-responsive genes relies on a common nuclear factor. Nature 370, 226–229 ( 1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Bannister, A. J. & Kouzarides, T. CBP-induced stimulation of c-Fos activity is abrogated by E1A. EMBO J. 14, 4758–4762 ( 1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kamei, Y. et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85, 403–414 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  6. Dai, P. et al. CBP as a transcriptional coactivator of c-Myb. Genes Dev. 10, 528–540 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  7. Bhattacharya, S. et al. Cooperation of Stat2 and p300/CBP in signalling induced by interferon-α. Nature 383, 344–347 ( 1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Petrij, F. et al. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376, 344–347 ( 1996).

    Google Scholar 

  9. Orenic, T. V., Slusarski, D. C., Kroll, K. L. & Holmgren, R. A. Cloning and characterization of the segment polarity gene cubitus interruptus dominant of Drosophila. Genes Dev. 4, 1053–1067 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  10. Blair, S. S. Hedgehog digs up an old friend. Nature 373, 656–657 ( 1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Hui, C.-C. & Joyner, A. L. A mouse model of Greig cephalopolysyndactyly syndrome: the extra-toes mutation contains an intragenic deletion of the Gli3 gene. Nature Genet. 3, 241–245 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  12. Vortkamp, A., Gessler, M. & Grzeschik, K.-H. GLI3 zinc-finger gene interrupted by translocations in Greig syndrome families. Nature 352, 539–540 ( 1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Alexandre, C., Jacinto, A. & Ingham, P. W. Transcriptional activation of hedgehog target genes in Drosophilais mediated directly by the Cubitus interruptus protein, a member of the GLI family of zinc finger DNA-binding proteins. Genes Dev. 10, 2003–2013 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  14. Locke, J. & Tartof, K. D. Molecular analysis of cubitus interruptus (ci) mutations suggests an explanation for the unusual ci position effects. Mol. Gen. Genet. 243, 234–243 ( 1994).

    CAS  PubMed  Google Scholar 

  15. Slusarski, D. C., Motzny, C. K. & Holmgren, R. Mutations that alter the timing and pattern of cubitus interruptus gene expression in Drosophila melanogaster. Genetics 139, 229–240 ( 1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schuske, K., Hooper, J. E. & Scott, M. P. patched overexpression causes loss of wingless expression in Drosophila embryos. Dev. Biol. 164, 300–311 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  17. Dominguez, M., Brunner, M., Hafen, E. & Basler, K. Sending and receiving the hedgehog signal: control by the Drosophila Gli protein cubitus interruptus. Science 272, 1621–1625 ( 1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Hama, C., Ali, Z. & Kornberg, T. B. Region-specific recombination and expression are directed by portions of the Drosophila engrailed promoter. Genes Dev. 4, 1079–1093 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  19. Brown, N. H. & Kafatos, F. C. Functional cDNA libraries from Drosophila embryos. J. Mol. Biol. 203, 425–437 ( 1988).

    Article  CAS  PubMed  Google Scholar 

  20. Johnson, R. L., Grenier, J. K. & Scott, M. P. patched overexpression alters wing disc size and pattern: transcriptional and post-transcriptional effects on hedgehog targets. Development 121, 4161–4170 ( 1995).

    CAS  PubMed  Google Scholar 

  21. Tabata, T. & Kornberg, T. B Hedgehog is a signaling protein with a key role in patterning Drosophila imaginal discs. Cell 76, 89–102 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  22. Xu, T. & Rubin, G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237 ( 1993).

    CAS  PubMed  Google Scholar 

  23. Vojtek, A. B., Hollenberg, S. M. & Cooper, J. A. Mammalian ras interacts directly with the serine/ threonine kinase raf. Cell 74, 205–214 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  24. Krasnow, M. A., Saffman, E. E., Kornfeld, K. & Hogness, D. S. Transcriptional activation and repression by Ultrabithorax proteins in cultured Drosophila cells. Cell 57, 1031–1043 ( 1989).

    Article  CAS  PubMed  Google Scholar 

  25. Thummel, C. S., Boulet, A. M. & Lipshitz, H. D. Vectors for Drosophila P-element-mediated transformation and tissue culture transfection. Gene 74, 445–456 ( 1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akimaru, H., Chen, Y., Dai, P. et al. Drosophila CBP is a co-activator of cubitus interruptus in hedgehog signalling. Nature 386, 735–738 (1997). https://doi.org/10.1038/386735a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386735a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing