Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A new subunit of the cyclic nucleotide-gated cation channel in retinal rods

Abstract

RETINAL rods respond to light with a membrane hyperpolarization produced by a G-protein-mediated signalling cascade that leads to cyclic GMP hydrolysis and the consequent closure of a cGMP-gated channel that is open in darkness1–7. A protein that forms this channel has recently been purified from bovine retina8 and molecularly cloned9, suggesting that the native cGMP-gated channel might be a homo-oligomer10. Here we report the cloning of another protein from human retina which has only about 30% overall identity to the rod channel subunit. This protein, immunocytochemically localized to rod outer segments, does not form functional channels by itself. However, when co-expressed with the cloned human rod channel protein11, it introduces rapid flickers to the channel openings that are characteristic of the native channel12–16. The hetero-oligomeric channel is also highly sensitive to the blocker L-cis-diltiazem, like the native channel15,17,18. This new protein thus seems to be another subunit of the native rod channel. The hetero-oligomeric nature of the rod channel means that it is no exception to a common motif shared by other ligand-gated channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Yau, K.-W. & Baylor, D. A. A. Rev. Neurosci. 12, 289–327 (1989).

    Article  CAS  Google Scholar 

  2. Pugh, E. N. & Lamb, T. D. Vision Res. 30, 1923–1948 (1990).

    Article  CAS  Google Scholar 

  3. McNaughton, P. A. Physiol. Rev. 70, 847–883 (1991).

    Article  Google Scholar 

  4. Stryer, L. J. biol. Chem. 266, 10711–10714 (1991).

    CAS  PubMed  Google Scholar 

  5. Yau, K.-W. Curr. Opin. Neurobiol. 1, 252–257 (1991).

    Article  CAS  Google Scholar 

  6. Kaupp, U. B. & Koch, K.-W. A. Rev Physiol. 54, 153–173 (1992).

    Article  CAS  Google Scholar 

  7. Lagnado, L. & Baylor, D. A. Neuron 8, 995–1002 (1992).

    Article  CAS  Google Scholar 

  8. Cook, N. J., Hanke, W. & Kaupp, U. B. Proc. natn. Acad. Sci. U.S.A. 84, 585–589 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Kaupp, U. B. et al. Nature 342, 762–766 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Kaupp, U. B. Trends Neurosci. 14, 150–157 (1991).

    Article  CAS  Google Scholar 

  11. Dhallan, R. S. et al. J. Neurosci. 12, 3248–3256 (1992).

    Article  CAS  Google Scholar 

  12. Haynes, L. W., Kay, A. R. & Yau, K.-W. Nature 321, 66–70 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Zimmerman, A. L. & Baylor, D. A. Nature 321, 70–72 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Matthews, G. & Watanabe, S.-I. J. Physiol., Lond. 403, 389–405 (1988).

    Article  CAS  Google Scholar 

  15. Quandt, F. N., Nicol, G. D. & Schnetkamp, P. P. M. Neuroscience 42, 629–638 (1991).

    Article  CAS  Google Scholar 

  16. Torre, V., Straforini, M., Sesti, F. & Lamb, T. D. Proc. R. Soc. B250, 209–215 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Stern, J. H., Kaupp, U. B. & MacLeish, P. R. Proc. natn. Acad. Sci. U.S.A. 83, 1163–1167 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Haynes, L. W. J. gen. Physiol. 100, 783–801 (1992).

    Article  CAS  Google Scholar 

  19. Jan, L. Y. & Jan, Y. N. Nature 345, 672 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Wohlfart P., Haase, W., Molday, R. S. & Cook, N. J. J. biol. Chem. 267, 644–648 (1992).

    CAS  PubMed  Google Scholar 

  21. Yau, K.-W., Haynes, L. W. & Nakatani, K. in Membrane Control of Cellular Activity (ed. Lüttgau, H. C.) 343–366 (Fischer, Stuttgart, 1986).

    Google Scholar 

  22. Matthews, G. J. Neurosci. 6, 2521–2526 (1986).

    Article  CAS  Google Scholar 

  23. Lühring, H., Hanke, W., Simmoteit, R. & Kaupp, U. B. in Sensory Transduction (eds Borsellino, A., Cervetto, L. & Torre, V.) 169–173 (Plenum, New York, 1990).

    Book  Google Scholar 

  24. Koch, K.-W. & Kaupp, U. B. J. biol. Chem. 260, 6788–6800 (1985).

    CAS  PubMed  Google Scholar 

  25. Bean, B. P., Williams, C. A. & Ceelen, P. W. J. Neurosci. 10, 11–19 (1990).

    Article  CAS  Google Scholar 

  26. Nawy, S. & Jahr, C. E. Nature 346, 269–271 (1990).

    Article  ADS  CAS  Google Scholar 

  27. Shiells, R. A. & Falk, G. Proc. R. Soc. B247, 21–25 (1992).

    Article  ADS  CAS  Google Scholar 

  28. Dhallan, R. S., Yau, K. W., Schrader, K. A. & Reed, R. R. Nature 347, 184–187 (1990).

    Article  ADS  CAS  Google Scholar 

  29. Frings, S., Lynch, J. W. & Lindemann, B. J. gen. Physiol. 100, 45–68 (1992).

    Article  CAS  Google Scholar 

  30. MacKinnon, R. & Yellen, G. Science 250, 276–279 (1990).

    Article  ADS  CAS  Google Scholar 

  31. Yellen, G., Jurman, M. E., Abramson, T. & MacKinnon, R. Science 251, 939–944 (1991).

    Article  ADS  CAS  Google Scholar 

  32. Yool, A. J. & Schwarz, T. L. Nature 349, 700–704 (1991).

    Article  ADS  CAS  Google Scholar 

  33. Hartmann, H. A. et al. Science 251, 942–944 (1991).

    Article  ADS  CAS  Google Scholar 

  34. Kyte, J. & Doolittle, R. F. J. molec. Biol. 157, 105–132 (1982).

    Article  CAS  Google Scholar 

  35. Nathans, J., Thomas, D. & Hogness, D. S. Science 232, 193–202 (1986).

    Article  ADS  CAS  Google Scholar 

  36. Jones, D. T. & Reed, R. R. Science 244, 790–796 (1989).

    Article  ADS  CAS  Google Scholar 

  37. Peng, Y. W., Sharp, A. H., Snyder, S. H. & Yau, K.-W. Neuron 6, 525–531 (1991).

    Article  CAS  Google Scholar 

  38. Gorman, C. M., Gies, D. R. & McCray, G. DNA and Protein Engineering Techniques 2, 3–9 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, TY., Peng, YW., Dhallan, R. et al. A new subunit of the cyclic nucleotide-gated cation channel in retinal rods. Nature 362, 764–767 (1993). https://doi.org/10.1038/362764a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362764a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing