Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fusion proteins of the retinoic acid receptor-α recruit histone deacetylase in promyelocytic leukaemia

Abstract

The transforming proteins of acute promyelocytic leukaemias (APL) are fusions of the promyelocytic leukaemia (PML) and the promyelocytic leukaemia zinc-finger (PLZF) proteins with retinoic acid receptor-α (RARα)1,2. These proteins retain the RARα DNA- and retinoic acid (RA)-binding domains, and their ability to block haematopoietic differentiation depends on the RARα DNA-binding domain3,4,5,6. Thus RA-target genes are downstream effectors7,8. However, treatment with RA induces differentiation of leukaemic blast cells and disease remission in PML–RARα APLs, whereas PLZF–RARα APLs are resistant to RA1,2. Transcriptional regulation by RARs involves modifications of chromatin by histone deacetylases, which are recruited to RA-target genes by nuclear co-repressors9,10. Here we show that both PML–RARα and PLZF–RARα fusion proteins recruit the nuclear co-repressor (N-CoR)–histone deacetylase complex through the RARα CoR box. PLZF–RARα contains a second, RA-resistant binding site in the PLZF amino-terminal region. High doses of RA release histone deacetylase activity from PML–RARα, but not from PLZF–RARα. Mutation of the N-CoR binding site abolishes the ability of PML–RARα to block differentiation, whereas inhibition of histone deacetylase activity switches the transcriptional and biological effects of PLZF–RARα from being an inhibitor to an activator of the RA signalling pathway. Therefore, recruitment of histone deacetylase is crucial to the transforming potential of APL fusion proteins, and the different effects of RA on the stability of the PML–RARα and PLZF–RARα co-repressor complexes determines the differential response of APLs to RA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interactions of PML–RARα and PLZF–RARα with N-CoR and histone deacetylase.
Figure 2: Effects of PML–RARα AHT on differentiation.
Figure 3: Differential N-CoR–fusion protein interactions.
Figure 4: Effects of TSA on RA-induced TGase expression and differentiation of U937 PML–RARα or PLZF–RARα cells.
Figure 5: A model for the interactions of APL fusion proteins with the N-CoR–mSin3–histone deacetylase (HD) complex.

Similar content being viewed by others

References

  1. Grignani, F. et al. Acute promyelocytic leukaemia: from genetics to treatment. Blood 83, 10–25 (1994).

    CAS  PubMed  Google Scholar 

  2. Warrell, R. P. J., de Thé, H., Wang, Z. Y. & Degos, L. Acute promyelocytic leukaemia. N. Engl. J. Med. 324, 177–189 (1993).

    Article  Google Scholar 

  3. de The, H. et al. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66, 675–684 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Kakizuka, A. et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 66, 663–674 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Pandolfi, P. P. et al. Genomic variability and alternative splicing generate multiple PML/RAR alpha transcripts that encode aberrant PML proteins and PML/RAR alpha isoforms in acute promyelocytic leukaemia. EMBO J. 11, 1397–1407 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, Z. et al. Fusion between a novel Krüppel-like zinc finger gene and retinoic acid receptor-α locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J. 12, 1161–1167 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen, Z. et al. PLZF-RAR alpha fusion proteins generated from the variant t(11;17)(q23;q21) translocation in acute promyelocytic leukemia inhibit ligand-dependent transactivation of wild-type retinoic acid recetors. Proc. Natl Acad. Sci. USA 91, 1178–1182 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ruthardt, M. et al. Opposite effects of the Acute Promyelocytic Leukaemia PML/RARα and PLZF/RARα fusion proteins on retinoic acid signalling. Mol. Cell. Biol. 17, 4859–4869 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Heinzel, T. et al. Acomplex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387, 43–49 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Nagy, L. et al. Nuclear receptor repression mediated by a complex containing SMRT,,mSin3A, and histone deacetylase. Cell 89, 373–380 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature 389, 349–352 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Wolffe, A. P. Sinful repression. Nature 387, 16–17 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Mangelsdorf, D. J. & Evans, R. M. The RXR heterodimers and orphan receptors. Cell 83, 841–850 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Minucci, S. & Ozato, K. Retinoid receptors in transcriptional regulation. Curr. Opin. Genet. Dev. 6, 567–574 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Chambon, P. Adecade of molecular biology of retinoid receptors. FASEB J. 10, 940–954 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Hong, S., David, G., Wong, C., Dejean, A. & Privalsky, M. SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor alpha and PLZF-RAR alpha oncoproteins associated with acute promyelocytic leukaemia. Proc. Natl Acad. Sci. USA 94, 9028–9033 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grignani, F. et al. The acute promyelocytic leukemia-specific PML-RAR alpha fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell 74, 423–431 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Grignani, F. et al. Effects on differentiation by the promyelocytic leukemia PML/RARalpha protein depend on the fusion of the PML protein dimerization and RARalpha DNA binding domains. EMBO J. 15, 4949–4958 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Horlein, A. J. et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377, 397–403 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Dhordain, P. et al. SMRT binds the BTB/POZ repressing domain of the LAZ3/BCL6 oncoprotein. Proc. Natl Acad. Sci. USA 94, 10727–10767 (1997).

    Article  Google Scholar 

  21. Yoshida, M., Kijima, M., Akita, M. & Beppu, T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem. 265, 17174–17179 (1990).

    CAS  PubMed  Google Scholar 

  22. Nagy, L. et al. Identification and characterization of a versatile retinoid response element in the mouse tissue transglutaminase gene promoter. J. Biol. Chem. 271, 4355–4365 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Benedetti, L. et al. Retinoic-induced differentiation of acute promyelocytic leukemia involves PML-RARα-mediated increase of type II transglutaminase. Blood 87, 1939–1950 (1996).

    CAS  PubMed  Google Scholar 

  24. Borrow, J. et al. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the REB-binding protein. Nature Genet. 14, 33–41 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Zamir, I. et al. Anuclear hormone receptor coreceptor mediates transcriptional silencing by receptors with distinct repression domains. Mol. Cell. Biol. 16, 5458–5465 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nervi, C. et al. Characterisation of the PML/RAR chimeric product of the APL-specific t(15;17) translocation. Cancer Res. 52, 3687–3692 (1992).

    CAS  PubMed  Google Scholar 

  27. Bartl, S. et al. Identification of mouse histone deacetylase I as a growth-factor inducible gene. Mol. Cell. Biol. 17, 5033–5043 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sundstrom, C. & Nilsson, K. Establishment and characterization of a human histiocytic lymphoma cell line (U-937). Int. J. Cancer 17, 565–577 (1976).

    Article  CAS  PubMed  Google Scholar 

  29. Lin, R. J. et al. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 391, 811–814 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. P. DiFiore, K. Ozato, K. Helin, T. Casini and M. Maccarana for discussions, and C. Matteucci, S. DiPietro and S. Lupo for technical help. S.D.M., V.G. and M.F. are recipients of fellowships from A.U.L.L., A.I.R.C. and INT (Milan), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Giuseppe Pelicci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grignani, F., De Matteis, S., Nervi, C. et al. Fusion proteins of the retinoic acid receptor-α recruit histone deacetylase in promyelocytic leukaemia. Nature 391, 815–818 (1998). https://doi.org/10.1038/35901

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35901

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing