Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multiple nucleotide-binding sites in the sequence of dynein β heavy chain

Abstract

AXONEMAL dyneins have two or three globular heads joined by flexible tails to a common base, with each head/tail unit consisting of a single heavy-chain polypeptide of relative molecular mass >400,000. The sizes of the components have been deduced by electron microscopy1–3. The isolated β heavy chain of sea urchin sperm flagella, which is immunologically identical to that of the embryo cilia (data not shown; ref. 4), is of particular interest as it retains the capability for microtubule translocation in vitro5,6. Limited proteolysis of the β heavy chain divides it into two fragments, A and B, which sediment separately at 12S and 6S, and possibly correspond to the head and tail domains of the molecule7. Dynein ATPase is the energy-transducing enzyme that generates the sliding movement between tubules that underlies the beating of cilia and flagella of eukaryotes, and possibly also other large intracellular movements8,9. Here we report that the deduced amino-acid sequence of the β heavy chain of axonemal dynein from embryos of the sea urchin Tripneustes gratilla has 4,466 residues and contains the consensus motifs for five nucleotide-binding sites. The probable hydrolytic ATP-binding site can be identified by its location close to or at the VI site of vanadate-mediated photo-cleavage10. The general features of the map of photocleavage and proteolytic peptides reported earlier have been confirmed, except that the map's polarity is reversed. The predicted secondary structure of the β heavy chain consists of an α/β-type pattern along its whole length. The two longest regions of potential a. helix, with unbroken heptad hydrophobic repeats 120 and 50 amino acids long, may be of functional importance. But dynein does not seem to contain an extended coiled-coil tail domain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Goodenough, U. W. & Heuser, J. J. molec. Biol. 180, 1083–1118 (1984).

    Article  CAS  Google Scholar 

  2. Sale, W. S., Goodenough, U. W. & Heuser, J. E. J. Cell Biol. 101, 1400–1412 (1985).

    Article  CAS  Google Scholar 

  3. Smith, E. F. & Sale, W. S. Cell Motil. Cytoskel. 18, 258–268 (1991).

    Article  CAS  Google Scholar 

  4. Ogawa, K. et al. Cell Motil. Cytoskel. 16, 58–67 (1990).

    Article  CAS  Google Scholar 

  5. Vale, R. D., Soll, D. R. & Gibbons, I. R. Cell 59, 915–925 (1989).

    Article  CAS  Google Scholar 

  6. Sale, W. S., & Fox, L. A. J. Cell Biol. 107, 1793–1798 (1988).

    Article  CAS  Google Scholar 

  7. Ow, R. A., Mocz, G., Tang, W.-J. Y. & Gibbons, I. R. J. biol. Chem. 262, 3409–3414 (1987).

    CAS  PubMed  Google Scholar 

  8. Vale, R. D. A. Rev. Cell Biol. 3, 347–378 (1987).

    Article  CAS  Google Scholar 

  9. Gibbons, I. R. J. biol. Chem. 263, 15837–15840 (1988).

    CAS  PubMed  Google Scholar 

  10. Gibbons, I. R. et al. J. biol. Chem. 262, 2780–2786 (1987).

    CAS  PubMed  Google Scholar 

  11. Mocz, G., Tang, W.-J. Y. & Gibbons, I. R. J. Cell Biol. 106, 1607–1614 (1988).

    Article  CAS  Google Scholar 

  12. Ogawa, K. Proc. Japan Acad. 67B, 27–31 (1991).

    Article  Google Scholar 

  13. Ogawa, K. Proc. Int. Echinoderm Cong. Tokyo (in the press).

  14. Foltz, K. Asai, D. J., Cell Motil. Cytoskel. 16, 33–46 (1990).

    Article  CAS  Google Scholar 

  15. Garber, A. T., Retief, J. D. & Dixon, G. H. EMBO J. 8, 1727–1734 (1989).

    Article  CAS  Google Scholar 

  16. Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. EMBO J. 1, 945–951 (1982).

    Article  CAS  Google Scholar 

  17. Cremo, C. R., Long, G. T. & Grammar, J. Biochemistry 29, 7982–7990 (1990).

    Article  CAS  Google Scholar 

  18. Cremo, C. R. Biophys. J. 59, 513 (1991).

    Google Scholar 

  19. Gottesman, S., Clark, W. P. & Maurizi, M. R. J. biol. Chem. 265, 7886–7893 (1990).

    CAS  PubMed  Google Scholar 

  20. Hayashi, M. & Higashi-Fujimi, S. Biochemistry 11, 2977–2982 (1972).

    Article  CAS  Google Scholar 

  21. Mocz, G. & Gibbons, I. R. J. biol. Chem. 265, 2917–2922 (1990).

    CAS  PubMed  Google Scholar 

  22. Tang, W.-J. Y. & Gibbons, I. R. J. biol. Chem. 262, 17728–17734 (1987).

    CAS  PubMed  Google Scholar 

  23. King, S. M., Haley, B. E. & Witman, G. B. J. biol. Chem. 264, 10210–10218 (1989).

    CAS  PubMed  Google Scholar 

  24. Gascuel, O. & Golmard, J. L. CABIOS 4, 357–365 (1988).

    CAS  PubMed  Google Scholar 

  25. Mocz, G., Farias, J. & Gibbons, I. R. Biochemistry (in the press).

  26. McLachlan, A. D. & Karn, J. J. molec. Biol. 164, 605–626 (1983).

    Article  CAS  Google Scholar 

  27. Pearson, W. R. & Lipman, D. J. Proc. natn. Acad. Sci. U. S. A. 85, 2444–2448 (1988).

    Article  ADS  CAS  Google Scholar 

  28. Obar, R. A., Collins, C. A., Hammarback, J. A., Shpetner, H. S. & Vallee, R. B. Nature 347, 256–261 (1990).

    Article  ADS  CAS  Google Scholar 

  29. Warrick, H. M. & Spudich, J. A. A. Rev. Cell Biol. 3, 379–421 (1987).

    Article  CAS  Google Scholar 

  30. Yang, J. T., Laymon, R. A. & Goldstein, L. S. B. Cell 56, 879–889 (1989).

    Article  CAS  Google Scholar 

  31. Endow, S. A., Henikoff, S. & Soler-Niedziela, L. Nature 345, 81–83 (1990).

    Article  ADS  CAS  Google Scholar 

  32. McDonald, H. B. & Goldstein, L. S. B. Cell 61, 991–1000 (1990).

    Article  CAS  Google Scholar 

  33. Mocz, G. & Gibbons, I. R. Biochemistry 29, 4839–4843 (1990).

    Article  CAS  Google Scholar 

  34. Gibbons, I. R. et al. Proc. natn. Acad. Sci. U.S.A. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibbons, I., Gibbons, B., Mocz, G. et al. Multiple nucleotide-binding sites in the sequence of dynein β heavy chain. Nature 352, 640–643 (1991). https://doi.org/10.1038/352640a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352640a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing