Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

GATA3 haplo-insufficiency causes human HDR syndrome

Abstract

Terminal deletions of chromosome 10p result in a DiGeorge-like phenotype that includes hypoparathyroidism, heart defects, immune deficiency, deafness and renal malformations1. Studies in patients with 10p deletions have defined two non-overlapping regions that contribute to this complex phenotype. These are the DiGeorge critical region II (refs 1, 2), which is located on 10p13-14, and the region for the hypoparathyroidism, sensorineural deafness, renal anomaly (HDR) syndrome3 (Mendelian Inheritance in Man number 146255)4, which is located more telomeric (10p14–10pter)5,6. We have performed deletion-mapping studies in two HDR patients, and here we define a critical 200-kilobase region which contains the GATA3 gene7. This gene belongs to a family of zinc-finger transcription factors that are involved in vertebrate embryonic development8,9,10. Investigation for GATA3 mutations in three other HDR probands identified one nonsense mutation and two intragenic deletions that predicted a loss of function, as confirmed by absence of DNA binding by the mutant GATA3 protein. These results show that GATA3 is essential in the embryonic development of the parathyroids, auditory system and kidneys, and indicate that other GATA family members may be involved in the aetiology of human malformations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physical and genetic map of the HDR region on 10p15.
Figure 2: Detection of GATA3 mutations in HDR patients.
Figure 3: Locations of the GATA3 mutations and effects on DNA binding.

Similar content being viewed by others

References

  1. Daw, S. C. et al. A common region of 10p deleted in DiGeorge and velocardiofacial syndromes. Nature Genet. 13, 458– 460 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Schuffenhauer, S. et al. Deletion mapping on chromosome 10p and definition of a critical region for the second DiGeorge syndrome locus (DGS2). Eur. J. Hum. Genet. 6, 213–225 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  3. Bilous, R. W. et al. Autosomal dominant familial hypoparathyroidism, sensorineural deafness, and renal dysplasia. N. Engl. J. Med. 327 , 1069–1074 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. McKusick, V. A. Mendelian Inheritance in Man. Catalogs of Human Genes and Genetic Disorders (Johns Hopkins Univ. Press, Baltimore, 1998).

    Google Scholar 

  5. Van Esch, H. et al. Partial DiGeorge syndrome in two patients with a 10p rearrangement. Clin. Genet. 55, 269–276 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Lichtner, P. et al. An HDR (hypoparathyroidism, deafness, renal dysplasia) syndrome locus maps distal to the DiGeorge syndrome region on 10p13/14. J. Med. Genet. 37, 33–37 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Labastie, M. C. et al. Structure and expression of the human GATA3 gene. Genomics 21, 1–6 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  8. Pandolfi, P. P. et al. Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nature Genet. 11, 40–44 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  9. Kuo, C. T. et al. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 11, 1048–1060 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Simon, M. C. Gotta have GATA. Nature Genet. 11, 9– 11 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Labastie, M. C., Catala, M., Gregoire, J. M. & Peault, B. The GATA-3 gene is expressed during human kidney embryogenesis. Kidney Int. 47, 1597–1603 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Debacker, C., Catala, M. & Labastie, M. C. Embryonic expression of the human GATA-3 gene. Mech. Dev. 85, 183–187 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  13. Schuler, G. D. et al. A gene map of the human genome. Science 274, 540–546 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Yang, Z. et al. Human GATA-3 trans-activation, DNA-binding, and nuclear localization activities are organized into distinct structural domains. Mol. Cell. Biol. 14, 2201–2212 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brown, S. A. et al. Holoprosencephaly due to mutations in ZIC2, a homologue of Drosophila odd-paired. Nature Genet. 20, 180–183 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Momeni, P. et al. Mutations in a new gene, encoding a zinc-finger protein, cause tricho- rhino-phalangeal syndrome type I. Nature Genet. 24, 71–74 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Beetz, R. et al. Hypoparathyreoidismus und Innenohrschwerhorigkeit. Monatsschrift Kinderheilkunde 145, 347– 352 (1997).

    Article  Google Scholar 

  18. Rivolta, M. N. & Holley, M. C. GATA3 is downregulated during hair cell differentiation in the mouse cochlea. J. Neurocytol. 27, 637–647 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  19. George, K. M. et al. Embryonic expression and cloning of the murine GATA-3 gene. Development 120, 2673– 2686 (1994).

    CAS  PubMed  Google Scholar 

  20. Hendriks, R. W. et al. Expression of the transcription factor GATA-3 is required for the development of the earliest T cell progenitors and correlates with stages of cellular proliferation in the thymus. Eur. J. Immunol. 29, 1912–1918 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  21. Ting, C. N., Olson, M. C., Barton, K. P. & Leiden, J. M. Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 384, 474–478 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Nichols, K. E. et al. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nature Genet. 24 , 266–270 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Nanni, L. et al. The mutational spectrum of the sonic hedgehog gene in holoprosencephaly: SHH mutations cause a significant proportion of autosomal dominant holoprosencephaly. Hum. Mol. Genet. 8, 2479– 2488 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Rosenthal, N. & Harvey, R. P. Single allele mutations at the heart of congenital disease. J. Clin. Invest. 104, 1483–1484 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Soderlund, C., Longden, I. & Mott, R. FPC: a system for building contigs from restriction fingerprinted clones. Comput. Appl. Biosci. 13, 523– 535 (1997).

    CAS  PubMed  Google Scholar 

  26. Sulston, J., Mallett, F., Durbin, R. & Horsnell, T. Image analysis of restriction enzyme fingerprint autoradiograms. Comput. Appl. Biosci. 5, 101–106 ( 1989).

    CAS  PubMed  Google Scholar 

  27. Lloyd, S. E. et al. A common molecular basis for three inherited kidney stone diseases. Nature 379, 445– 449 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Latchman, D. S. (ed.) Transcription Factors (Oxford Univ. Press, Oxford, 1993).

    Google Scholar 

Download references

Acknowledgements

We are grateful to R. Thoelen for the FISH analysis; A. Poffyn for clinical data; P. Romeo for the gift of cosmid clone 1.2; T. Meitinger for his support; the Fonds voor Wetenschappelijk Onderzoek Vlaanderen (FWO), the “Geconcerteerde Onderzoeksactie 1997–2001” and the Interuniversitaire Attractie Polen (IUAP) for support; the Medical Research Council, UK, for support (M.A.N., B.H., R.V.T.). H.V.E. is an Aspirant and K.D. is a Senior Clinical Investigator of the Fund for Scientific Research–Flanders, Belgium (FWO–Vlaanderen).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajesh V. Thakker or Koenraad Devriendt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Esch, H., Groenen, P., Nesbit, M. et al. GATA3 haplo-insufficiency causes human HDR syndrome. Nature 406, 419–422 (2000). https://doi.org/10.1038/35019088

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35019088

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing