Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the Fc fragment of human IgE bound to its high-affinity receptor FcεRIα

Abstract

The initiation of immunoglobulin-E (IgE)-mediated allergic responses requires the binding of IgE antibody to its high-affinity receptor, FcεRI. Crosslinking of FcεRI initiates an intracellular signal transduction cascade that triggers the release of mediators of the allergic response. The interaction of the crystallizable fragment (Fc) of IgE (IgE-Fc) with FcεRI is a key recognition event of this process and involves the extracellular domains of the FcεRI α-chain. To understand the structural basis for this interaction, we have solved the crystal structure of the human IgE-Fc–FcεRIα complex to 3.5-Å resolution. The crystal structure reveals that one receptor binds one dimeric IgE-Fc molecule asymmetrically through interactions at two sites, each involving one Cε3 domain of the IgE-Fc. The interaction of one receptor with the IgE-Fc blocks the binding of a second receptor, and features of this interaction are conserved in other members of the Fc receptor family. The structure suggests new approaches to inhibiting the binding of IgE to FcεRI for the treatment of allergy and asthma.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the crystal structure of the IgE-Fc–FcεRIα complex.
Figure 2: Structural basis for the 1:1 binding of IgE to FcεRIα.
Figure 3: Details of the interactions in the IgE-Fc–FcεRIα complex at site 1 and site 2.
Figure 4: Conservation of amino-acid residues and contacts at the IgE-Fc–FcεRIα interfaces in IgG receptors and antibodies.
Figure 5: Implications of the complex.

Similar content being viewed by others

References

  1. Metzger, H. The receptor with high affinity for IgE. Immunol. Rev. 125, 37–48 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Kinet, J. P. The high-affinity IgE receptor (FcεRI): from physiology to pathology. Annu. Rev. Immunol. 17, 931– 972 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Basu, M. et al. Purification and characterization of human recombinant IgE-Fc fragments that bind to the human high affinity IgE receptor. J. Biol. Chem. 268, 13118–13127 ( 1993).

    CAS  PubMed  Google Scholar 

  4. Keown, M. B. et al. Hydrodynamic studies of a complex between the Fc fragment of human IgE and a soluble fragment of the FcεRI α-chain. Proc. Natl Acad. Sci. USA 92, 1841– 1845 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Keown, M. B., Ghirlando, R., Mackay, G. A., Sutton, B. J. & Gould, H. J. Basis of the 1:1 stoichiometry of the high affinity receptor FcεRI-IgE complex. Eur. Biophys. J. 25, 471–476 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  6. Daeron, M. Fc receptor biology. Annu. Rev. Immunol. 15, 203–234 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Turner, H. & Kinet, J. P. Signalling through the high-affinity IgE receptor FcεRI. Nature 402 (Suppl. B), 24–30 (1999).

    Article  ADS  Google Scholar 

  8. Ravetch, J. V. & Clynes, R. A. Divergent roles for Fc receptors and complement in vivo. Annu. Rev. Immunol. 16, 421–432 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Cookson, W. The alliance of genes and environment in asthma and allergy. Nature 402 (suppl. B), 5–11 ( 1999).

    Article  ADS  Google Scholar 

  10. Jardieu, P. M. & Fick, R. B. Jr IgE inhibition as a therapy for allergic disease. Int. Arch. Allergy Immunol. 118, 112–115 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  11. Chang, T. W. The pharmacological basis of anti-IgE therapy. Nature Biotechnol. 18, 157–162 ( 2000).

    Article  CAS  Google Scholar 

  12. Garman, S. C., Kinet, J. P. & Jardetzky, T. S. Crystal structure of the human high-affinity IgE receptor. Cell 95, 951– 961 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Nissim, A., Jouvin, M. H. & Eshhar, Z. Mapping of the high affinity Fcε-receptor binding site to the third constant region domain of IgE. EMBO J. 10, 101–107 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Keegan, A. D., Fratazzi, C., Shopes, B., Baird, B. & Conrad, D. H. Characterization of new rat anti-mouse IgE monoclonals and their use along with chimeric IgE to further define the site that interacts with FcεRII and FcεRI. Mol. Immunol. 28, 1149–1154 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Presta, L. et al. The binding site on human immunoglobulin E for its high affinity receptor. J. Biol. Chem. 269, 26368– 26373 (1994).

    CAS  PubMed  Google Scholar 

  16. Henry, A. J. et al. Participation of the N-terminal region of Cε3 in the binding of human IgE to its high-affinity receptor FcεRI. Biochemistry 36, 15568–15578 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Granato, D. A. & Neeser, J. R. Effect of trimming inhibitors on the secretion and biological activity of a murine IgE monoclonal antibody. Mol. Immunol. 24, 849– 855 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. Letourneur, O., Sechi, S., Willette-Brown, J., Robertson, M. W. & Kinet, J. P. Glycosylation of human truncated FcεRI α-chain is necessary for efficient folding in the endoplasmic reticulum. J. Biol. Chem. 270, 8249– 8256 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Kanellopoulos, J. M., Liu, T. Y., Poy, G. & Metzger, H. Composition and subunit structure of the cell receptor for immunoglobulin E. J. Biol. Chem. 255, 9060–9066 (1980).

    CAS  PubMed  Google Scholar 

  20. Robertson, M. W. Phage and Escherichia coli expression of the human high affinity immunoglobulin E receptor α-subunit ectodomain. Domain localization of the IgE-binding site. J. Biol. Chem. 268, 12736– 12743 (1993).

    CAS  PubMed  Google Scholar 

  21. Maxwell, K. F. et al. Crystal structure of the human leukocyte Fc receptor, FcγRIIa. Nature Struct. Biol. 6, 437– 442 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Sondermann, P., Huber, R. & Jacob, U. Crystal structure of the soluble form of the human FcγRIIb: a new member of the immunoglobulin superfamily at 1.7 Å resolution. EMBO J. 18, 1095–1103 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sondermann, P., Jacob, U., Kutscher, C. & Frey, J. Characterization and crystallization of soluble human FcγRII (CD32) isoforms produced in insect cells. Biochemistry 38, 8469– 8477 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Sanchez, L. M., Penny, D. M. & Bjorkman, P. J. Stoichiometry of the interaction between the major histocompatibility complex-related Fc receptor and its Fc ligand. Biochemistry 38, 9471–9476 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Shi, J. et al. Interaction of the low-affinity receptor CD23/FcεRII lectin domain with the Fcε3-4 fragment of human immunoglobulin E. Biochemistry 36, 2112–2122 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Deisenhofer, J., Colman, P. M., Epp, O. & Huber, R. Crystallographic structural studies of a human Fc fragment. II. A complete model based on a Fourier map at 3.5 Å resolution. Hoppe Seylers Z. Physiol. Chem. 357, 1421–1434 ( 1976).

    Article  CAS  PubMed  Google Scholar 

  27. Harris, L. J., Larson, S. B. & McPherson, A. Comparison of intact antibody structures and the implications for effector function. Adv. Immunol. 72, 191–208 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Schreiber, S. L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287, 1964–1969 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Mallamaci, M. A. et al. Identification of sites on the human FcεRI α-subunit which are involved in binding human and rat IgE. J. Biol. Chem. 268, 22076–22083 ( 1993).

    CAS  PubMed  Google Scholar 

  30. Hulett, M. D., Witort, E., Brinkworth, R. I., McKenzie, I. F. & Hogarth, P. M. Identification of the IgG binding site of the human low affinity receptor for IgG FcγRII. Enhancement and ablation of binding by site-directed mutagenesis. J. Biol. Chem. 269, 15287–15293 ( 1994).

    CAS  PubMed  Google Scholar 

  31. Hulett, M. D., Witort, E., Brinkworth, R. I., McKenzie, I. F. & Hogarth, P. M. Multiple regions of human FcγRII (CD32) contribute to the binding of IgG. J. Biol. Chem. 270, 21188–21194 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Cook, J. P. et al. Identification of contact residues in the IgE binding site of human FcεRIα. Biochemistry 36, 15579–15588 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Hulett, M. D., Brinkworth, R. I., McKenzie, I. F. & Hogarth, P. M. Fine structure analysis of interaction of FcεRI with IgE. J. Biol. Chem. 274, 13345–13352 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Sayers, I. et al. Amino acid residues that influence FcεRI-mediated effector functions of human immunoglobulin E. Biochemistry 37 , 16152–16164 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Anderson, C. L., Ryan, D. H., Looney, R. J. & Leary, P. C. Structural polymorphism of the human monocyte 40 kilodalton Fc receptor for IgG. J. Immunol. 138, 2254– 2256 (1987).

    CAS  PubMed  Google Scholar 

  36. Duncan, A. R., Woof, J. M., Partridge, L. J., Burton, D. R. & Winter, G. Localization of the binding site for the human high-affinity Fc receptor on IgG. Nature 332, 563–564 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Chappel, M. S. et al. Identification of the Fcγ-receptor class I binding site in human IgG through the use of recombinant IgG1/IgG2 hybrid and point-mutated antibodies. Proc. Natl Acad. Sci. USA 88, 9036–9040 (1991).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hulett, M. D., McKenzie, I. F. & Hogarth, P. M. Chimeric Fc receptors identify immunoglobulin-binding regions in human FcγRII and FcεRI. Eur. J. Immunol. 23, 640–645 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  39. Jefferis, R., Lund, J. & Pound, J. D. IgG-Fc-mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation. Immunol. Rev. 163, 59–76 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Keown, M. B., Henry, A. J., Ghirlando, R., Sutton, B. J. & Gould, H. J. Thermodynamics of the interaction of human immunoglobulin E with its high-affinity receptor FcεRI. Biochemistry 37, 8863–8869 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Zheng, Y., Shopes, B., Holowka, D. & Baird, B. Dynamic conformations compared for IgE and IgG1 in solution and bound to receptors. Biochemistry 31, 7446–7456 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Dorrington, K. J. & Bennich, H. H. Structure–function relationships in human immunoglobulin E. Immunol. Rev. 41, 3–25 (1978).

    Article  CAS  PubMed  Google Scholar 

  43. Otwinowski, Z. & Minor, W. in Methods in Enzymology: Macromolecular Crystallography, Part A (eds Carter, C. W. Jr & Sweet, R. M.) 307–326 (Academic, New York, 1997).

    Book  Google Scholar 

  44. Collaborative Computational Project No. 4. The CCP4 Suite: Programs for Protein Crystallography. Acta Crystallogr. D 50, 760–763 ( 1994).

    Article  Google Scholar 

  45. Kissinger, C. R., Gehlhaar, D. K. & Fogel, D. B. Rapid automated molecular replacement by evolutionary search. Acta Crystallogr. D 55, 484– 491 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Harris, L. J., Larson, S. B., Hasel, K. W. & McPherson, A. Refined structure of an intact IgG2a monoclonal antibody. Biochemistry 36, 1581–1597 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  47. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  48. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Kraulis, P. J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946 –950 (1991).

    Article  Google Scholar 

  50. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Baker, J. Quintana, and D. Keane for help with synchrotron data collection and Y. Wang, G. Sun, and E. Song for technical assistance. Portions of this work were performed at the Dupont-Northwestern-Dow (DND-CAT) Synchrotron Research Center of the Advanced Photon Source and the Advanced Light Source beamline 5.0.2. This research has been supported by the National Institutes of Health (T.S.J.), the Pew Scholars Program in the Biomedical Sciences (T.S.J.), Heska Corporation (T.S.J.), and the American Cancer Society (S.C.G.). Coordinates have been deposited in the PDB with accession number 1F6A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore S. Jardetzky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garman, S., Wurzburg, B., Tarchevskaya, S. et al. Structure of the Fc fragment of human IgE bound to its high-affinity receptor FcεRIα. Nature 406, 259–266 (2000). https://doi.org/10.1038/35018500

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35018500

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing