Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Alteration in crossbridge kinetics caused by mutations in actin

Abstract

THE generation of force during muscle contraction results from the interaction of myosin and actin. The kinetics of this force generation vary between different muscle types and within the same muscle type in different species1-2. Most attention has focused on the role of myosin isoforms in determining these differences3-5. The role of actin isoforms has received little attention, largely because of the lack of a suitable cell type in which the myosin isoform remains constant yet the actin isoforms vary. An alternative approach would be to examine the effect of actin mutations, however, most of these cause such gross disruption of muscle structure that mechanical measurements are impossible6-10. We have now identified two actin mutations which, despite involving conserved amino acids, can assemble into virtually normal myofibrils11. These amino-acid changes in actin significantly affect the kinetics of force generation by muscle fibres. One of the mutations is not in the putative myosin-binding site, demonstrating the importance of long-range effects of amino acids on actin function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Close, R. I. Physiol. Rev. 52, 129–197 (1972).

    Article  CAS  PubMed  Google Scholar 

  2. Molloy, J. E., Kyrtatas, V., Sparrow, J. C. & White, D. C. S. Nature 328, 449–452 (1987).

    Article  ADS  Google Scholar 

  3. Hoh, J. F. Y., Hughes, S., Hale, P. T. & Fitzsimons, R. B. J. musc. Res. Cell Motil. 9, 30–47 (1988).

    Article  CAS  Google Scholar 

  4. Schwartz, K. et al. J. molec. cell. Cardiol. 13, 1071–1075 (1981).

    Article  CAS  Google Scholar 

  5. McNally, E. M., Kraft, R., Bravo-Zehender, M., Taylor, D. A. & Leinwand, L. A. J. molec. Biol. 210, 665–671 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Mogami, K. & Hotta, Y. Molec. gen. Genet. 183, 409–417 (1981).

    Article  CAS  PubMed  Google Scholar 

  7. Karlik, C. C., Coutu, M. D. & Fyrberg, E. A. Cell 38, 711–719 (1984).

    Article  CAS  PubMed  Google Scholar 

  8. Karlik, C. C., Saville, D. L. & Fyrberg, E. A. Molec. cell. Biol. 7, 3084–3091 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sakai, Y., Okamoto, H., Mogami, K., Yamada, T. & Hotta, Y. J. Biochem. 107, 499–505 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Reedy, M. C., Beall, C. & Fyrberg, E. Nature 339, 481–483 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Drummond, D. R., Hennessey, E. S. & Sparrow, J. C. Molec. gen. Genet. (in the press).

  12. Ball, E. et al. Cell 51, 221–228 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Unwin, D. M. & Ellington, C. P. J. exp. Biol. 82, 377–378 (1979).

    Google Scholar 

  14. Akrigg, D. et al. Nature 335, 745–746 (1988).

    Article  Google Scholar 

  15. Hightower, R. C. & Meagher, R. B. Genetics 114, 315–332 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pollard, T. D. & Cooper, J. A. A. Rev. Biochem. 55, 987–1035 (1986).

    Article  CAS  Google Scholar 

  17. Schutt, C. E. & Lindberg, U. in Molecular Mechanisms in Muscular Contraction (ed. Squire, J. M.) 49–63 (Macmillan, Basingstoke, UK, 1990).

    Book  Google Scholar 

  18. Moir, A. J. G. & Levine, B. A. J. inorg. Biochem. 28, 271–278 (1986).

    Article  CAS  PubMed  Google Scholar 

  19. Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F. & Holmes, K. C. Nature 347, 37–44 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Hambly, B. D., Barden, J. A., Miki, M. & Dos Remedios, C. G. Bioessays 4, 124–128 (1986).

    Article  CAS  PubMed  Google Scholar 

  21. Szilagyi, L. & Lu, R. C. Biochiem. biophys. Acta 709, 204–211 (1982).

    CAS  Google Scholar 

  22. Peckham, M., Molloy, J. E., Sparrow, J.C., White, D.C.S. J. Muscle Res. Cell Motil. 11, 203–215 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. O'Farrell, P. H. J. biol. Chem. 250, 4007–4021 (1975).

    CAS  PubMed  Google Scholar 

  24. Mahaffey, J. W., Coutu, M. D., Fyrberg, E. A. & Inwood, W. Cell 40, 101–110 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. Okamoto, H. et al. EMBO J. 5, 589–596 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rubin, G. M. & Spradling, A. C. Science 218, 348–353 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. O'Donnell, P. T. & Bernstein, S. I. J. Cell Biol. 107, 2601–2612 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drummond, D., Peckham, M., Sparrow, J. et al. Alteration in crossbridge kinetics caused by mutations in actin. Nature 348, 440–442 (1990). https://doi.org/10.1038/348440a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/348440a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing