Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180

Abstract

During programmed cell death, cell corpses are rapidly engulfed1. This engulfment process involves the recognition and subsequent phagocytosis of cell corpses by engulfing cells1,2,3,4. How cell corpses are engulfed is largely unknown. Here we report that ced-5, a gene that is required for cell-corpse engulfment in the nematode Caenorhabditis elegans5, encodes a protein that is similar to the human protein DOCK180 and the Drosophila melanogaster protein Myoblast City (MBC), both of which have been implicated in the extension of cell surfaces6. ced-5 mutants are defective not only in the engulfment of cell corpses but also in the migrations of two specific gonadal cells, the distal tip cells. The expression of human DOCK180 in C. elegans rescued the cell-migration defect of a ced-5 mutant. We present evidence that ced-5 functions in engulfing cells during the engulfment of cell corpses. We suggest that ced-5 acts in the extension of the surface of an engulfing cell around a dying cell during programmed cell death. We name this new family of proteins that function in the extension of cell surfaces the CDM (for CED-5, DOCK180 and MBC) family.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular cloning of the ced-5 gene.
Figure 2: Cell-corpse engulfment and DTC migration are similar processes.

Similar content being viewed by others

References

  1. Ellis, R. E., Yuan, J. & Horvitz, H. R. Mechanisms and functions of cell death. Annu. Rev. Cell Biol. 7, 663–698 (1991).

    Article  CAS  Google Scholar 

  2. Savill, J., Fadok, V., Henson, P. & Haslett, C. Phagocyte recognition of cells undergoing apoptosis. Immunol. Today 14, 131–136 (1993).

    Article  CAS  Google Scholar 

  3. Hart, S. P., Haslett, C. & Dransfield, I. Recognition of apoptotic cells by phagocytes. Experientia 52, 950–956 (1996).

    Article  CAS  Google Scholar 

  4. Savill, J. Apoptosis in resolution of inflammation. J. Leuk. Biol. 61, 375–380 (1997).

    Article  CAS  Google Scholar 

  5. Ellis, R., Jacobson, D. M. & Horvitz, H. R. Genes required for the engulfment of cell corpses during programmed cell death in C. elegans. Genetics 129, 79–94 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hesegawa, H. et al. DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane. Mol. Cell. Biol. 16, 1770–1776 (1996).

    Article  Google Scholar 

  7. Hedgecock, E., Sulston, J. & Thomson, J. N. Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science 220, 1277–1279 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Kimble, J. Alterations in cell lineage following laser ablation of cells in the somatic gonad of Caenorhabditis elegans. Dev. Biol. 87, 286–300 (1981).

    Article  CAS  Google Scholar 

  9. Hedgecock, E. M., Culotti, J. G., Hall, D. H. & Stern, B. D. Genetics of cell and axon migrations in Caenorhabditis elegans. Development 100, 365–382 (1987).

    CAS  PubMed  Google Scholar 

  10. Coulson, A., Sulston, J., Brenner, S. & Karn, J. Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 83, 7821–7825 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Way, J. C. & Chalfie, M. mec-3, a homeobox-containing gene that specifies differentiation of the touch receptor neurons in C. elegans. Cell 54, 5–16 (1988).

    Article  CAS  Google Scholar 

  12. Krause, M. & Hirsh, D. Atrans-spliced leader sequence on actin mRNA in C. elegans. Cell 49, 753–761 (1987).

    Article  CAS  Google Scholar 

  13. Stringham, E. G., Dixon, D. K., Jones, D. & Candido, E. P. Temporal and spatial expression patterns of the small heat shock (hsp16) genes in transgenic Caenorhabditis elegans. Mol. Biol. Cell 3, 221–233 (1992).

    Article  CAS  Google Scholar 

  14. Erickson, M., Galletta, B. J. & Abmayr, S. M. Drosophila myoblast city encodes a conserved protein that is essential for myoblast fusion, dorsal closure, and cytoskeletal organization. J. Cell Biol. 138, 589–603 (1997).

    Article  CAS  Google Scholar 

  15. Nagase, T. et al. Prediction of the coding sequences of unidentified human genes. VI. The coding sequences of 80 new genes (KIAA0201-KIAA0280) deduced by analysis of cDNA clones from cell line KG-1 and brain. DNA Res. 3, 321–329 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Mayer, B. J., Hamaguchi, M. & Hanafusa, H. Anovel viral oncogene with structural similarity to phospholipase C. Nature 332, 272–275 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Clark, E. A. & Brugge, J. S. Integrins and signal transduction pathways: the road taken. Science 268, 233–239 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Savill, J., Dransfield, I., Hogg, N. & Haslett, C. Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature 343, 170–173 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Rushton, E., Drysdale, R., Abmayr, S. M., Michelson, A. M. & Bate, M. Mutations in a novel gene, myoblast city, provide evidence in support of the founder cell hypothesis for Drosophila muscle development. Development 121, 1979–1988 (1995).

    CAS  PubMed  Google Scholar 

  20. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Fire, A., Harrison, S. W. & Dixon, D. Amodular set of lacZ fusion vectors for studying gene expression in Caenorhabditis elegans. Gene 93, 189–198 (1990).

    Article  CAS  Google Scholar 

  22. Robertson, A. G. & Thomson, J. N. Morphology of programmed cell death in the ventral nerve cord of C. elegans larvae. J. Embryo. Exp. Morph. 67, 89–100 (1982).

    Google Scholar 

  23. Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M. & Horvitz, H. R. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme. Cell 75, 641–652 (1993).

    Article  CAS  Google Scholar 

  24. Hengartner, M. O. & Horvitz, H. R. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76, 665–676 (1994).

    Article  CAS  Google Scholar 

  25. Zou, H., Henzel, W. J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413 (1997).

    Article  CAS  Google Scholar 

  26. Mello, C. C., Kramer, J. M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: Extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1992).

    Article  Google Scholar 

  27. Bloom, L. & Horvitz, H. R. The Caenorhabditis elegans gene unc-76 and its human homologs define a new gene family involved in axonal outgrowth and fasciculation. Proc. Natl Acad. Sci. USA 94, 3414–3419 (1997).

    Article  ADS  CAS  Google Scholar 

  28. Barstead, R. J. & Waterston, R. H. The basal component of the nematode dense-body is vinculin. J. Biol. Chem. 264, 10177–10185 (1989).

    CAS  PubMed  Google Scholar 

  29. Okkema, P. G. & Fire, A. The Caenorhabditis elegans NK-2 class homeoprotein CEH-22 is involved in combinatorial activation of gene expression in pharyngeal muscle. Development 120, 2175–2186 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of H.R.H.'s laboratory and C.-L. Wei for their comments, D. Hall and E. Hedgecock for sharing unpublished results regarding DTC migration, R. Barstead and P. Okkema for cDNA libraries, A Coulson for cosmids, H. Hasegawa and M. Matsuda for the DOCK180 cDNA clone, E. James for determining DNA sequences of the RACE product, S. Glass for the ced-5 alleles n2098 and n2099 and J. Harris and C. Kenyon for mu57. H.R.H. is an Investigator of the Howard Hughes Medical Institute. The accession number for the ced-5 sequence is AF038576.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Robert Horvitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, YC., Horvitz, H. C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature 392, 501–504 (1998). https://doi.org/10.1038/33163

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/33163

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing