Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Subtle structural alterations in the chains of type I procollagen produce osteogenesis imperfecta type II

Abstract

Although the perinatal lethal form1 of osteogenesis imperfecta (OI type II) occasionally results from large rearrangements within the genes encoding type I collagen2–5, most mutations are far more subtle. The complexity of the human collagen genes6 precludes cloning and sequencing each gene from every patient, and we have therefore developed an approach to localizing mutations at the protein level. We report here that cells cultured from 15 infants with OI type II synthesized both normal type I procollagen and a form that was unstable, poorly secreted and excessively modified. Abnormal procollagen from different strains was overmodified to different extents. The patterns of overmodification we observed are best explained by mutations that disrupt the Gly-X-Y sequence of proα chains, and thus alter the rate of propagation of triple helix from COOH-terminus to NH2-terminus7. As a consequence, a given mutation allows overmodification of all three chains in a molecule NH2-terminal to its position in the triple helix.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sillence, D. O., Senn, A. S. & Danks, D. M. J. med. Genet. 16, 101–116 (1979).

    Article  CAS  Google Scholar 

  2. Hollister, D. W., Byers, P. H. & Holbrook, K. A. Adv. hum. Genet. 12, 1–83 (1982).

    CAS  PubMed  Google Scholar 

  3. Byers, P. H. & Bonadio, J. F. in International Medical Reviews, Pediatrics 5, Genetic and Metabolic Disease (eds Scriver, C. R. & Lloyd, J.) (Butterworths, London, in the press).

  4. Prockop, D. J. & Kivirikko, K. New Engl. J. Med. 311, 376–386 (1984).

    Article  CAS  Google Scholar 

  5. Prockop, D. J. J. clin. Invest. 75, 783–787 (1985).

    Article  CAS  Google Scholar 

  6. Tate, V., Finer, M., Boedtker, H. & Doty, P. Cold Spring Harb. Symp. quant. Biol. 47, 1039–1049 (1982).

    Article  CAS  Google Scholar 

  7. Bachinger, H. P., Fessler, L. I., Timpl, R. & Fessler, J. H. J. biol. Chem. 256, 13193–13199 (1981).

    CAS  PubMed  Google Scholar 

  8. Bernstein, P., Kang, A. H. & Piez, K. A. Biochemistry 5, 3803–3812 (1966).

    Article  Google Scholar 

  9. Kivirikko, K. I. & Myllyla, R. Meth. Enzym. 82, 245–304 (1982).

    Article  CAS  Google Scholar 

  10. Barsh, G. S. & Byers, P. H. Proc. natn. Acad. Sci. U.S.A. 78, 5142–5146 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Barsh, G. S., Roush, C. L., Bonadio, J., Byers, P. H. & Gelinas, R. E. Proc, natn. Acad Sci U.S.A. 82, 2870–2874 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Williams, C. J. & Prockop, D. J. J. biol. Chem. 258, 5915–5921 (1983).

    CAS  PubMed  Google Scholar 

  13. Chu, M.-L. et al. Nature 304, 78–80 (1983).

    Article  ADS  CAS  Google Scholar 

  14. de Wet, W. J., Pihlajaniemi, T., Myers, J., Kelly, T. E. & Prockop, D. J. J. biol. Chem. 258, 7721–7728 (1983).

    CAS  PubMed  Google Scholar 

  15. Bonadio, J., Holbrook, K. A., Gelinas, R. E., Jacob, J. & Byers, P. H. J. biol. Chem. 260, 1734–1742 (1985).

    CAS  PubMed  Google Scholar 

  16. Stricklin, G. P., Eisen, F. Z., Bauer, E. A. & Jeffrey, J. J. Biochemistry 17, 2331–2337 (1978).

    Article  CAS  Google Scholar 

  17. Prockop, D. J., Kivirikko, K. I., Tuderman, L. & Guzman, N. A. New Engl. J. Med. 301, 13–23 (1979).

    Article  CAS  Google Scholar 

  18. Steinmann, B. et al. J. biol. Chem. 259, 11129–11138 (1984).

    CAS  PubMed  Google Scholar 

  19. Trelstad, R. L., Rubin, D. & Gross, J. Lab. Invest. 36, 501–508 (1977).

    CAS  PubMed  Google Scholar 

  20. Kirsch, E. et al. Eur. J. clin. Invest. 11, 39–47 (1981).

    Article  CAS  Google Scholar 

  21. Bateman, J. F., Mascara, T., Chan, D. & Cole, W. G. Biochem. J. 217, 103–115 (1984).

    Article  CAS  Google Scholar 

  22. Byers, P. H., et al. Am. J. hum. Genet. 35, 39A (1983).

    Google Scholar 

  23. Dixon, L. A. et al. Proc. natn. Acad. Sci. U.S.A. 81, 4525–4528 (1984).

    Article  ADS  Google Scholar 

  24. Pihlajaniemi, T. et al. J. biol. Chem. 259, 12941–12944 (1984).

    CAS  PubMed  Google Scholar 

  25. Sillence, D. O., Barlow, K. K., Garber, A. P., Hall, J. G. & Rimoin, D. Am. J. med. Genet. 17, 407–423 (1984).

    Article  CAS  Google Scholar 

  26. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  27. Barsh, G. S., Peterson, K. E. & Byers, P. H. Collagen and Related Research 1, 543–548 (1981).

    Article  CAS  Google Scholar 

  28. Bruckner, P., Eikenberry, E. F. & Prockop, D. J. Eur. J. Biochem. 118, 607–613 (1981).

    Article  CAS  Google Scholar 

  29. Chu, M.-L., Gargiulo, Y., Williams, C. & Ramirez, F. J. biol. Chem. 260, 691–694 (1985).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonadio, J., Byers, P. Subtle structural alterations in the chains of type I procollagen produce osteogenesis imperfecta type II. Nature 316, 363–366 (1985). https://doi.org/10.1038/316363a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/316363a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing