Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Specific transcription and RNA splicing defects in five cloned β-thalassaemia genes

Abstract

Transcriptional analysis of five different cloned β-thalassaemia genes introduced into cultured mammalian cells revealed specific defects in transcription and RNA splicing. A single base change 87 base pairs to the 5′ side of the mRNA cap site significantly lowers the level of transcription and therefore appears to represent a promoter mutation. Three genes contain different single base changes in the first intervening sequence (IVS) 5′ splice site. One mutation, at IVS1 position 1, inactivates the splice site completely; the other two, at IVS I positions 5 and 6, reduce its activity. Each mutation activates the same three cryptic splice sites. The fifth gene contains a single base change within IVS2 at position 745, which results in the formation of abnormal β-globin RNA that contains an extra exon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bunn, H. F., Forget, B. G. & Ranney, H. M. Human Hemoglobins (Saunders, Philadelphia, 1977).

    Google Scholar 

  2. Weatherall, D. J. & Clegg, J. B. The Thalassemia Syndromes (Blackwell Scientific, Oxford, 1981).

    Google Scholar 

  3. Maniatis, T., Fritsch, E. F., Lauer, J. & Lawn, R. M. A. Rev. Genet. 14, 145 (1980).

    Article  CAS  Google Scholar 

  4. Efstratiadis, A. et al. Cell 21, 653–688 (1980).

    Article  CAS  PubMed  Google Scholar 

  5. Orkin, S. H. & Nathan, D. G. Adv. Hum. Genet. 11, 233–280 (1981).

    CAS  PubMed  Google Scholar 

  6. Proudfoot, N. J., Gil, A. & Maniatis, T. Cell 31, 553–563 (1982).

    Article  CAS  PubMed  Google Scholar 

  7. Weatherall, D. J. & Clegg, J. B. Cell 29, 7–9 (1982).

    Article  CAS  PubMed  Google Scholar 

  8. Orkin, S. H. et al. Nature 296, 627–631 (1982).

    Article  CAS  ADS  PubMed  Google Scholar 

  9. Baird, M. et al. Proc. natn. Acad. Sci. U.S.A. 78, 4218–4221 (1981).

    Article  CAS  ADS  Google Scholar 

  10. Old, J. M. et al. Cell 14, 289–298 (1978).

    Article  CAS  PubMed  Google Scholar 

  11. Benz, E. J. et al. Cell 14, 299–312 (1978).

    Article  CAS  PubMed  Google Scholar 

  12. Maquat, L. E. et al. Proc. natn. Acad. Sci. U.S.A. 77, 4287–4291 (1980).

    Article  CAS  ADS  Google Scholar 

  13. Kantor, J. A., Turner, P. H. & Neinhuis, A. W. Cell 21, 149–157 (1980).

    Article  CAS  PubMed  Google Scholar 

  14. Maquat, L. E., Kinniburgh, A. J., Rachmilewitz, E. A. & Ross, J. Cell 27, 543–553 (1981).

    Article  CAS  PubMed  Google Scholar 

  15. Moschonas, N. et al. Nucleic Acids Res. 9, 4391–4401 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fukumaki, Y. et al. Cell 28, 585–593 (1982).

    Article  CAS  PubMed  Google Scholar 

  17. Ley, T. J., Aragon, N. P., Pepe, G. & Neinhuis, A. Proc. natn. Acad. Sci. U.S.A. 79, 4775–4779 (1982).

    Article  CAS  ADS  Google Scholar 

  18. Felber, B. K., Orkin, S. H. & Hamer, D. H. Cell 29, 895–902 (1982).

    Article  CAS  PubMed  Google Scholar 

  19. Treisman, R. H., Proudfoot, N. J., Shander, M. & Maniatis, T. Cell 79, 903–911 (1982).

    Article  Google Scholar 

  20. DiMaio, D., Treisman, R. & Maniatis, T. Proc. natn. Acad. Sci. U.S.A. 79, 4030–4034. (1982).

    Article  CAS  ADS  Google Scholar 

  21. Banerji, J., Rusconi, S. & Schaffner, W. Cell 27, 299–308 (1981).

    Article  CAS  PubMed  Google Scholar 

  22. Busslinger, M., Moschonas, N. & Flavell, R. A. Cell 27, 289–298 (1981).

    Article  CAS  PubMed  Google Scholar 

  23. Mellon, P., Parker, V., Gluzman, Y. & Maniatis, T. Cell 27, 279–288 (1981).

    Article  CAS  PubMed  Google Scholar 

  24. Lawn, R. M., Fritsch, E. F., Parker, R. C., Blake, G. & Maniatis, T. Cell 15, 1157–1174 (1978).

    Article  CAS  PubMed  Google Scholar 

  25. Dierks, P. et al. ICN-UCLA Symp. molec. cell. Biol. 23, 347–366 (1981).

    CAS  Google Scholar 

  26. Grosveld, G. C., deBoer, E., Shewmaker, C. K. & Flavell, R. A. Nature 295, 120–125 (1982).

    Article  CAS  ADS  PubMed  Google Scholar 

  27. Grosveld, G. C., Rosenthal, A. & Flavell, R. A. Nucleic Acids Res. 10, 4951–4984 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McKnight, S. L. & Kingsbury, R. Science 217, 316–324 (1982).

    Article  CAS  ADS  PubMed  Google Scholar 

  29. Benoist, C. & Chambon, P. Nature 290, 304–310 (1981).

    Article  CAS  ADS  PubMed  Google Scholar 

  30. Fromm, M. & Berg, P. J. molec. appl. Genet. 1, 457–481 (1982).

    CAS  Google Scholar 

  31. Lacy, E. & Maniatis, T. Cell 21, 545–553 (1980).

    Article  CAS  PubMed  Google Scholar 

  32. Gannon, F. et al. Nature 278, 428–434 (1979).

    Article  CAS  ADS  PubMed  Google Scholar 

  33. Poncz, M. et al. J. biol. Chem. 257, 5994–5996 (1982).

    CAS  PubMed  Google Scholar 

  34. Breathnach, R., Benoist, C., O'Hare, K., Gannon, F. & Chambon, P. Proc. natn. Acad. Sci. U.S.A. 75, 4853–4857 (1978).

    Article  CAS  ADS  Google Scholar 

  35. Dodgson, J. B. & Engel, J. D. J. biol. Chem. (submitted).

  36. Wieringa, B., Meyer, F., Reiser, J. & Weissmann, C. Nature 301, 38–43 (1983).

    Article  CAS  ADS  PubMed  Google Scholar 

  37. Montell, C., Fisher, E. F., Caruthers, M. H. & Berk, A. J. Nature 295, 380–384 (1982).

    Article  CAS  ADS  PubMed  Google Scholar 

  38. Choi, E., Kuehl, M. & Wall, R. Nature 286, 776–779 (1980).

    Article  CAS  ADS  PubMed  Google Scholar 

  39. Seidman, J. G. & Leder, P. Nature 286, 779–783 (1980).

    Article  CAS  ADS  PubMed  Google Scholar 

  40. Solnick, D. Nature 291, 508–510 (1981).

    Article  CAS  ADS  PubMed  Google Scholar 

  41. Orkin, S. H. et al. Nature 300, 768–769 (1982).

    Article  CAS  ADS  PubMed  Google Scholar 

  42. Humphries, R. K. et al. Blood 60, 54A (1982).

    Google Scholar 

  43. Lerner, M. R., Boyle, J. A., Mount, S. M., Wolin, S. L. & Steitz, J. A. Nature 283, 220–224 (1980).

    Article  CAS  ADS  PubMed  Google Scholar 

  44. Rogers, J. & Wall, R. Proc. natn. Acad. Sci. U.S.A. 77, 1877–1879 (1980).

    Article  CAS  ADS  Google Scholar 

  45. Sharp, P. A. Cell 23, 643–646 (1981)

    Article  CAS  PubMed  Google Scholar 

  46. Gilbert, W. Nature 271, 501 (1978).

    Article  CAS  ADS  PubMed  Google Scholar 

  47. Seed, B. Genetic Engineering Vol. 4 (eds Setlow, J. K. & Hollander, A.) 91–102 (Plenum, New York, 1982).

    Google Scholar 

  48. Weaver, R. F. & Weissmann, C. Nucleic Acids Res. 6, 1175–1193 (1979).

    Article  Google Scholar 

  49. Maxam, A. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  PubMed  Google Scholar 

  50. Mount, S. M. Nucleic Acids Res. 10, 459–472 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Treisman, R., Orkin, S. & Maniatis, T. Specific transcription and RNA splicing defects in five cloned β-thalassaemia genes. Nature 302, 591–596 (1983). https://doi.org/10.1038/302591a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/302591a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing