Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cloning of inv, a gene that controls left/right asymmetry and kidney development

Abstract

Most vertebrate internal organs show a distinctive left/right asymmetry. The inv (inversion of embryonic turning) mutation in mice was created previously by random insertional mutagenesis1; it produces both a constant reversal of left/right polarity (situs inversus) and cyst formation in the kidneys2. Asymmetric expression patterns of the genes nodal and lefty are reversed in the inv mutant3,4,5,6, indicating that inv may act early in left/right determination. Here we identify a new gene located at the inv locus. The encoded protein contains 15 consecutive repeats of an Ank/Swi6 motif7,8 at its amino terminus. Expression of the gene is the highest in the kidneys and liver among adult tissues, and is seen in presomite-stage embryos. Analysis of the transgenic genome and the structure of the candidate gene indicate that the candidate gene is the only gene that is disrupted in inv mutants. Transgenic introduction of a minigene encoding the candidate protein restores normal left/right asymmetry and kidney development in the inv mutant, confirming the identity of the candidate gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The inv transgenic integration site and FISH.
Figure 2: Genomic organization of the inv gene, cDNA clones and Southern hybridization.
Figure 3: Northern blot analysis of embryonic (a) and adult (b) tissues of the mouse using the candidate inv cDNA.
Figure 4: Transgenic rescue of inv/inv by introducing the candidate inv gene.
Figure 5: Deduced amino-acid sequence of the inv candidate gene.

Similar content being viewed by others

References

  1. Yokoyama, T.et al. Conserved cysteine to serine mutation in tyrosinase is responsible for the classical albino mutation in laboratory mice. Nucleic Acids Res. 18, 7293–7298 (1990).

    Article  CAS  Google Scholar 

  2. Yokoyama, T.et al. Reversal of left–right asymmetry: a situs inversus mutation. Science 263, 679–681 (1993).

    Article  ADS  Google Scholar 

  3. Meno, C.et al. Left–right asymmetric expression of the TGFβ-family member in mouse embryos. Nature 381, 151–155 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Meno, C.et al. Two closely-related left–right asymmetrically expressed genes, lefty-1 and lefty-2: their distinct expression domains, chromosomal linkage and direct neuralizing activity in Xenopus embryos. Genes Cells 2, 513–524 (1997).

    Article  CAS  Google Scholar 

  5. Collignon, J., Varlet, I. & Robertson, E. J. Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 381, 155–158 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Lowe, L. A.et al. Conserved left–right asymmetry of nodal expression and alterations in murine situs inversus. Nature 381, 158–161 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Lux, S. E., John, K. M. & Bennett, V. Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins. Nature 344, 36–42 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Bennett, V. Ankyrins, adapters between diverse plasma membrane proteins and the cytoplasm. J. Biol. Chem. 267, 8703–8706 (1992).

    CAS  Google Scholar 

  9. Levin, M., Johnson, R. L., Stern, C. D., Kuehn, M. & Tabin, C. Amolecular pathway determining left–right asymmetry in chick embryogenesis. Cell 82, 803–814 (1995).

    Article  CAS  Google Scholar 

  10. Isaac, A., Sargent, M. G. & Cooke, J. Control of vertebrate left–right asymmetry by a snail-related zinc finger gene. Science 275, 1301–1304 (1997).

    Article  CAS  Google Scholar 

  11. Yost, H. J. Regulation of vertebrate left–right asymmetries by extracellular matrix. Nature 357, 158–161 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Hummel, K. P. & Chapman, D. B. Visceral inversion and associated anomalies in the mouse. J. Hered. 50, 9–13 (1959).

    Article  Google Scholar 

  13. Layton, W. M. Random determination of a developmental process. Reversal of normal visceral asymmetry in the mouse. J. Hered. 67, 336–338 (1976).

    Article  Google Scholar 

  14. Supp, D. M., Witte, D. P., Potter, S. S. & Brueckner, M. Mutation of an axonemal dynein affects left–right asymmetry in inversus viscerum mice. Nature 389, 963–966 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Yokoyama, T., Harrison, W., Elder, F. F. B. & Overbeek, P. A. in Developmental Mechanisms of Heart Disease (eds Clark, E. B. & Takao, A.) 513–520 (Futura, New York, (1995)).

    Google Scholar 

  16. Larin, Z., Monaco, A. P. & Lehrach, H. Yeast artificial chromosome libraries containing large inserts from mouse and human DNA. Proc. Natl Acad. Sci. USA 88, 4123–4127 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Klar, A. J. S. Amodel for specification of the left/right axis in vertebrates. Trends Genet. 10, 392–396 (1994).

    Article  CAS  Google Scholar 

  18. Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–200 (1991).

    Article  CAS  Google Scholar 

  19. Peter, L. L. & Lux, S. E. Ankyrins: structure and function in normal cells and hereditary spherocytes. Semin. Hematol. 30, 85–118 (1993).

    Google Scholar 

  20. Yochem, J., Weston, K. & Greenwald, I. The Caenorhabditis elegans lin -12 gene encodes a transmembrane protein with overall similarity to Drosophila Notch. Nature 335, 547–550 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Yochem, J. & Greenwald, I. glp -1 and lin -12, genes implicated in distinct cell–cell interactions in C. elegans, encode similar transmembrane proteins. Cell 58, 887–898 (1989).

    Article  Google Scholar 

  22. Andrews, B. J. & Herskowitz, I. The yeast SWI4 protein contains a motif present in developmental regulators and is part of a complex involved in cell-cycle-dependent transcription. Nature 342, 830–833 (1989).

    Article  ADS  CAS  Google Scholar 

  23. Aves, S. J., Durkacz, B. W., Carr, A. & Nurse, P. Cloning, sequencing and transcriptional control of the Schizosaccharomyces pombe cdc10 ‘start’ gene. EMBO J. 4, 457–463 (1985).

    Article  CAS  Google Scholar 

  24. Breeden, L. & Nasmyth, K. Similarity between cell-cycle control genes of budding yeast and fission yeast and the Notch gene of Drosophila. Nature 329, 651–654 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Hyatt, B. A., Lohr, J. A. & Yost, H. J. Initiation of vertebrate left–right axis formation by maternal Vg 1. Nature 385, 62–65 (1996).

    Article  ADS  Google Scholar 

  26. Hyatt, B. A. & Yost, H. J. The left–right coordinator; the role of Vg1 in organizing left–right axis formation. Cell 93, 37–46 (1998).

    Article  CAS  Google Scholar 

  27. Lawrence, J. B., Villnave, C. A. & Singer, R. H. Sensitive, high resolution chromatin and chromosome mapping in situ : presence and orientation of two closely integrated copies of EBV in a lymphoma cell line. Cell 52, 51–61 (1988).

    Article  CAS  Google Scholar 

  28. Wilkinson, D. G. in In Situ Hybridization: A Practical Approach (ed. Wilkinson, D. G.) 75–84 (IRL, Oxford, (1992)).

    Google Scholar 

  29. Hogan, B., Costantini, F. & Lacy, L. in Manipulating the Mouse Embryo: A Laboratory Manual 153–203 (Cold Spring Harb. Lab., Cold Spring Harbor, (1986)).

    Google Scholar 

Download references

Acknowledgements

We thank A. Takao for encouragement and support; R. Kucherlapati, S. Somlo and S. Aizawa for suggestions; H. Lehrach for YAC clones; M. Ishibashi and M.Yokoyama for mouse husbandry and embryo preservation; S. Ohishi and K. Mochida for mouse genotyping and histological sections; the staff of the TWMC for supporting our projects; and J. Miyazaki for providing the pCAGGS vector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiko Yokoyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mochizuki, T., Saijoh, Y., Tsuchiya, K. et al. Cloning of inv, a gene that controls left/right asymmetry and kidney development. Nature 395, 177–181 (1998). https://doi.org/10.1038/26006

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/26006

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing