Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chaperone-like activity of the AAA domain of the yeast Yme1 AAA protease

Abstract

The AAA domain, a conserved Walker-type ATPase module, is a feature of members of the AAA family of proteins1,2, which are involved in many cellular processes, including vesicular transport3,4,5,6,7, organelle biogenesis8, microtubule rearrangement9 and protein degradation10,11,12. The function of the AAA domain, however, has not been explained. Membrane-anchored AAA proteases of prokaryotic and eukaryotic cells comprise a subfamily of AAA proteins13,14,15 that have metal-dependent peptidase activity and mediate the degradation of non-assembled membrane proteins. Inactivation of an orthologue of this protease family in humans causes neurodegeneration in hereditary spastic paraplegia16. Here we investigate the AAA domain of the yeast protein Yme1, a subunit of the i-AAA protease located in the inner membrane of mitochondria17,18. We show that Yme1 senses the folding state of solvent-exposed domains and specifically degrades unfolded membrane proteins. Substrate recognition and binding are mediated by the amino-terminal region of the AAA domain. The purified AAA domain of Yme1 binds unfolded polypeptides and suppresses their aggregation. Our results indicate that the AAA domain of Yme1 has a chaperone-like activity and suggest that the AAA domains of other AAA proteins may have a similar function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Unfolding of a solvent-exposed domain can trigger the degradation of a membrane protein by Yme1.
Figure 2: Interaction of Yta10(161)-DHFRWT and Yta10(161)-DHFRMUT with Yme1.
Figure 3: Binding of unfolded polypeptides to the AAA domain in vitro.
Figure 4: Chaperone-like activity of the AAA domain in vitro.

Similar content being viewed by others

References

  1. Beyer, A. Sequence analysis of the AAA protein family. Protein Sci. 6, 2043–2058 (1997).

    Article  CAS  Google Scholar 

  2. Patel, S. & Latterich, M. The AAA team: related ATPases with diverse functions. Trends Cell Biol. 8, 65–71 (1998).

    Article  CAS  Google Scholar 

  3. Rothman, J. E. Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Latterich, M., Fröhlich, K. U. & Schekman, R. Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell 82, 885–893 (1995).

    Article  CAS  Google Scholar 

  5. Mayer, A., Wickner, W. & Haas, A. Sec18p (NSF)-driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles. Cell 85, 83–94 (1996).

    Article  CAS  Google Scholar 

  6. Hanson, P. I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J. E. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523–535 (1997).

    Article  CAS  Google Scholar 

  7. Babst, M., Wendland, B., Estepa, E. J. & Emr, S. D. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J. 17, 2982–2993 (1998).

    Article  CAS  Google Scholar 

  8. Erdmann, R., Veenhuis, M. & Kunau, W. H. Peroxisomes: organelles at the crossroads. Trends Cell Biol. 7, 400–407 (1997).

    Article  CAS  Google Scholar 

  9. Hartman, J. J. et al. Katanin, a microtubule-severing protein, is a novel AAA ATPase that targets to the centrosome using a WD40-containing subunit. Cell 93, 277–287 (1997).

    Article  Google Scholar 

  10. Coux, O., Tanaka, K. & Goldberg, A. L. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65, 801–847 (1996).

    Article  CAS  Google Scholar 

  11. Larsen, C. N. & Finley, D. Protein translocation channels in the proteasome and other proteases. Cell 91, 431–434 (1997).

    Article  CAS  Google Scholar 

  12. Lupas, A., Flanagan, J. M., Tamura, T. & Baumeister, W. Self-compartimentalizing proteases. Trends Biochem. Sci. 22, 399–404 (1997).

    Article  CAS  Google Scholar 

  13. Langer, T. & Neupert, W. Regulated protein degradation in mitochondria. Experientia 52, 1069–1076 (1996).

    Article  CAS  Google Scholar 

  14. Rep, M. & Grivell, L. A. The role of protein degradation in mitochondrial function and biogenesis. Curr. Genet. 30, 367–380 (1996).

    Article  CAS  Google Scholar 

  15. Schumann, W. FtsH — a single chain charonin? FEMS Microbiol. Rev. 23, 1–11 (1999).

    Article  MathSciNet  CAS  Google Scholar 

  16. Casari, G. et al. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93, 973–983 (1998).

    Article  CAS  Google Scholar 

  17. Leonhard, K. et al. AAA proteases with catalytic sites on opposite membrane surfaces comprise a proteolytic system for the ATP-dependent degradation of inner membrane proteins in mitochondria. EMBO J. 15, 4218–4229 (1996).

    Article  CAS  Google Scholar 

  18. Weber, E. R., Hanekamp, T. & Thorsness, P. E. Biochemical and functional analysis of the YME1 gene product, an ATP and zinc-dependent mitochondrial protease from S. cerevisiae. Mol. Biol. Cell 7, 307–317 (1996).

    Article  CAS  Google Scholar 

  19. Pajic, A., Tauer, R., Feldmann, H., Neupert, W. & Langer, T. Yta10p is required for the ATP-dependent degradation of polypeptides in the inner membrane of mitochondria. FEBS Lett. 353, 201–206 (1994).

    Article  CAS  Google Scholar 

  20. Vestweber, D. & Schatz, G. Point mutations destabilizing a precursor protein enhance its post-translational import into mitochondria. EMBO J. 7, 1147–1151 (1988).

    Article  CAS  Google Scholar 

  21. Nakai, T., Yasuhara, T., Fujiki, Y. & Ohashi, A. Multiple genes, including a member of the AAA family, are essential for the degradation of unassembled subunit 2 of cytochrome c oxidase in yeast mitochondria. Mol. Cell. Biol. 15, 4441–4452 (1995).

    Article  CAS  Google Scholar 

  22. Pearce, D. A. & Sherman, F. Degradation of cytochrome oxidase subunits in mutants of yeast lacking cytochrome c and suppression of the degradation by mutation of yme1. J. Biol. Chem. 270, 1–4 (1995).

    Article  Google Scholar 

  23. Eilers, M. & Schatz, G. Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria. Nature 322, 228–232 (1986).

    Article  ADS  CAS  Google Scholar 

  24. Whiteheart, S. W. et al. N-ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion. J. Cell Biol. 126, 945–954 (1994).

    Article  CAS  Google Scholar 

  25. Gottesman, S., Maurizi, M. R. & Wickner, S. Regulatory subunits of energy-dependent proteases. Cell 91, 435–438 (1997).

    Article  CAS  Google Scholar 

  26. Suzuki, C. K. et al. ATP-dependent proteases that also chaperone protein biogenesis. Trends Biochem. Sci. 22, 118–123 (1997).

    Article  CAS  Google Scholar 

  27. Wagner, I., Arlt, H., van Dyck, L., Langer, T. & Neupert, W. Molecular chaperones cooperate with PIM1 protease in the degradation of misfolded proteins in mitochondria. EMBO J. 13, 5135–5145 (1994).

    Article  CAS  Google Scholar 

  28. Huang, S. et al. Effects of conversion of an invariant tryptophane residue to phenylalanine on the function of human dihydrofolate reductase. Biochemistry 28, 471–478 (1989).

    Article  CAS  Google Scholar 

  29. Tandon, S. & Horowitz, P. M. Reversible folding of rhodanese: presence of intermediate(s) at equilibrium. J. Biol. Chem. 264, 9859–9866 (1989).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Thorsness for the yme1K327R strain, M. Cahill for the plasmid pGEX-2T-6his-PL2, A. Lupas for sequence alignments and stimulating discussions, and A. Tzagoloff for critically reading the manuscript. This work was supported by grants from the Deutsche Forschungsgemeinschaft to T. L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Langer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonhard, K., Stiegler, A., Neupert, W. et al. Chaperone-like activity of the AAA domain of the yeast Yme1 AAA protease. Nature 398, 348–351 (1999). https://doi.org/10.1038/18704

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/18704

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing