Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A mammalian protein with specific demethylase activity for mCpG DNA

Abstract

DNA-methylation patterns are important for regulating genome functions, and are determined by the enzymatic processes of methylation and demethylation. The demethylating enzyme has now been identified: a mammalian complementary DNA encodes a methyl-CpG-binding domain, bears a demethylase activity that transforms methylated cytosine bases to cytosine, and demethylates a plasmid when the cDNA is translated or transiently transfected into human embryonal kidney cells in vitro. The discovery of this DNA demethylase should provide a basis for the molecular and developmental analysis of the role of DNA methylation and demethylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human demethylase cDNA.
Figure 2: In vitro expression and demethylase activity of the human demethylase encoded by the cloned cDNA.
Figure 3: Expression of cloned demethylase cDNA in HEK cells.
Figure 4: DNA-demethylase activity purified from human cancer cells produces cytosine and exhibits no exonuclease or glycosylase activity.

Similar content being viewed by others

References

  1. Siegfried, Z. & Cedar, H. DNA methylation: a molecular lock. Curr. Biol. 7, 305–307 (1997).

    Article  Google Scholar 

  2. Nan, X., Campoy, F. J. & Bird, A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88, 471–481 (1997).

    Article  CAS  Google Scholar 

  3. Nan, X. S. et al. Transcriptional repression by the methyl-CpG-binding protein MECP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Jones, P. L. et al. Methylated DNA and MECP2 recruit histone deacetylase to repress transcription. Nature Genet. 19, 187–191 (1998).

    Article  CAS  Google Scholar 

  5. Li, E., Bestor, T. H. & Jaenish, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    Article  CAS  Google Scholar 

  6. Razin, A. & Riggs, A. D. DNA methylation and gene function. Science 210, 604–610 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Brandeis, M., Ariel, M. & Cedar, H. Dynamics of DNA methylation during development. Bioassays 15, 709–713 (1993).

    Article  CAS  Google Scholar 

  8. Kafri, T., Gao, X. & Razin, A. Methanistic aspects of genome-wide demethylation in the preimplantation mouse embryo. Proc. Natl Acad. Sci. USA 90, 10558–10562 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Monk, M., Boubelik, M. & Lehnert, S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99, 371–382 (1987).

    CAS  Google Scholar 

  10. Bestor, T., Laudano, A., Mattaliano, R. & Ingram, V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J. Mol. Biol. 203, 971–983 (1988).

    Article  CAS  Google Scholar 

  11. Bestor, T. H. & Verdine, G. L. DNA methyltransferases. Curr. Opin. Cell Biol. 6, 380–389 (1994).

    Article  CAS  Google Scholar 

  12. Razin, A. et al. Replacement of 5-methylcytosine by cytosine: a possible mechanism for transient DNA demethylation during differentiation. Proc. Natl Acad. Sci. USA 83, 2827–2831 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Vairapandi, M. & Duker, N. J. Enzymic removal of 5-methylcytosine from DNA by a human glycosylase. Nucleic Acids Res. 21, 5323–5327 (1993).

    Article  CAS  Google Scholar 

  14. Jost, J. P., Siegmann, M., Sun, L. J. & Leung, R. Mechanisms of demethylation in chicken embryos—purification and properties of a 5-methylcytosine-DNA glycosylase. J. Biol. Chem. 270, 9734–9739 (1995).

    Article  CAS  Google Scholar 

  15. Weiss, A., Keshet, I., Razin, A. & Cedar, H. DNA demethylation in vitro: involvement of RNA. Cell 86, 709–718 (1996).

    Article  CAS  Google Scholar 

  16. Cross, S. H., Meehan, R. R., Nan, X. & Bird, A. Acomponent of the transcriptional repressor MeCP1 shares a motif with DNA methyltransferase and HRX proteins. Nature Genet. 16, 256–259 (1997).

    Article  CAS  Google Scholar 

  17. Boguski, M. S., Lowe, T. M. & Tolstoshev, C. M. dbEST-database for expressed sequence tags. Nature Genet. 4, 332–373 (1995).

    Article  Google Scholar 

  18. Henrich, B. & Bird, A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol. 18, 6538–6547 (1998).

    Article  Google Scholar 

  19. Corpet, F., Gouzy, J. & Kahn, D. The ProDom database of protein domain families. Nucleic Acids Res. 26, 323–326 (1998).

    Article  CAS  Google Scholar 

  20. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  21. Bairoch, A., Bucher, P. & Hofman, K. The PROSITE database, its status in 1997. Nucleic Acids Res. 25, 217–221 (1997).

    Article  CAS  Google Scholar 

  22. Rost, B. PHD: predicting one-dimensional protein structure by profile based neural networks. Methods Enzymol. 266, 525–539 (1996).

    Article  CAS  Google Scholar 

  23. Lupas, A., Van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991).

    Article  ADS  CAS  Google Scholar 

  24. O'Shea, E. K., Rutkowski, R. & Kim, P. S. Evidence that the leucine zipper is a coiled coil. Science 243, 538–542 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Nur, I. et al. Prokayotic and eukaryotic traits of DNA methylation in spiroplasmas (mycoplasmas). J. Bacteriol. 164, 19–24 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Szyf, M., Theberge, J. & Bozovic, V. Ras induces a general DNA demethylation activity in mouse embryonal P19 cells. J. Biol. Chem. 270, 12690–12696 (1995).

    Article  CAS  Google Scholar 

  27. Szyf, M. DNA methylation properties: consequences for pharmacoloty. Trends Pharmacol. Sci. 7, 233–238 (1994).

    Article  Google Scholar 

  28. Swisher, J. A., Rand, E., Cedar, H. & Pyle, A. M. Analysis of putative RNase sensitivity and protease insensitivity of demethylation activity in extracts from rat myoblasts. Nucleic Acids Res. 26, 5573–5580 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. ten Oever and H.-Y. Shiu for technical assistance and O. A. Mamer for help with mass spectrometry. This research was supported by the National Cancer Institute of Canada.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, S., Ramchandani, S., Cervoni, N. et al. A mammalian protein with specific demethylase activity for mCpG DNA. Nature 397, 579–583 (1999). https://doi.org/10.1038/17533

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/17533

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing