Skip to main content
Log in

Fanconi anaemia syndrome and apoptosis: state of the art

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Fanconi anemia (FA) is a rare recessive, human genetic syndrome characterized by progressive bone marrow failure, developmental abnormalities, predisposition to malignancy, chromosomal instability and DNA damage hypersensitivity. Two (FAA and FAC) of the five genes involved were cloned but their functions remain unknown. At present, the involvement of FA proteins in DNA repair, redox status of the cell and apoptosis are areas of intensive investigation. The aim of this review is to synthesize current results and ideas concerning the involvement of apoptosis in the FA phenotype and conversely, the role of FA proteins in the control of apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu JM, Buchwald M, Walsh CE, Young NS. Fanconi anemia and novel strategies for therapy. Blood 1994; 84: 3995-4007.

    Google Scholar 

  2. Young NS, Alter BP. In: Aplastic Anemia Acquired and Inherited. WB Saunders Company. 1994: 271-324.

  3. Giampietro PF, Adler-Brecher B, Verlander PC, et al. The need for more accurate and timely diagnosis in Fanconi anemia: a report from the International Fanconi Anemia Registry. Pediatrics 1993; 91: 116-1120.

    Google Scholar 

  4. Auerbach AD, Wolman SR. Susceptibility of Fanconi's anemia fibroblasts to chromosome damage by carcinogens. Nature 1976; 261: 494-496.

    Google Scholar 

  5. Weksberg R, Buchwald M, Sargent P, Thompson MW, Siminovitch L. Specific cellular defects in patients with Fanconi anemia. J Cell Physiol 1979; 101: 311-324.

    Google Scholar 

  6. Youssoufian H. Cytoplasmic localization of FAC is essential for the correction of a prerepair defect in Fanconi anemia group C cells. J Clin Invest 1996; 97: 2003-2010.

    Google Scholar 

  7. Dutrillaux B, Aurias A, Dutrillaux AM, Buriot D, Prieur M. The cell cycle of lymphocytes in Fanconi anemia. Hum Genet 1982; 62: 327-332.

    Google Scholar 

  8. Schultz JC, Shahidi NT. Tumor necrosis factor a overproduction in Fanconi's anemia. Am J Hematol 1993; 42: 196-201.

    Google Scholar 

  9. Rosselli F, Sanceau J, Gluckman E, Wietzerbin J, Moustacchi E. Abnormal lymphokine production: a novel feature of the genetic disease Fanconi anemia. II: In vitro and in vivo overproduction of Tumor Necrosis Factor a. Blood 1994; 83: 1216-1225.

    Google Scholar 

  10. Buchwald M. Complementation groups: one or more per gene? Nature Genet 1995; 11: 228-230.

    Google Scholar 

  11. Lo Ten Foe JR, Rooimans MA, Bosnoyab-Collins L, et al. Expression cloning of a cDNA for the major Fanconi anaemia gene, FAA. Nature Genet 1996; 14: 320-323.

    Google Scholar 

  12. The Fanconi Anaemia/Breast Cancer Consortium. Positional cloning of the Fanconi anaemia group A gene. Nature Genet 1996; 14: 324-328.

    Google Scholar 

  13. Strathdee CA, Gavish H, Shannon WR, Buchwald M. Cloning of cDNAs for Fanconi's anaemia by functional complementation. Nature 1992; 356: 763-767.

    Google Scholar 

  14. Peter ME, Heufelder AE, Hengartner MO. Advances in apoptosis research. Proc Natl Acad Sci USA 1997; 94: 12736-12737.

    Google Scholar 

  15. Segal GM, Magenis RE, Brown M, et al. Repression of Fanconi anemia gene (FAC) expression inhibits growth of hematopoietic progenitor cells. J Clin Invest 1994; 94: 846-852.

    Google Scholar 

  16. Willingale-Theune J, Schweiger M, Hirsch-Kauffmann M, et al. Ultrastructure of Fanconi anemia fibroblasts. J Cell Sci 1989; 93: 651-665.

    Google Scholar 

  17. Rosselli F, Ridet A, Soussi T, et al. p53-dependent pathway of radio-induced apoptosis is altered in Fanconi anemia. Oncogene 1995; 10: 9-17.

    Google Scholar 

  18. Ridet A, Guillouf C, Duchaud E, et al. Deregulated apoptosis is a hallmark of the Fanconi anemia syndrome. Cancer res 1997; 57: 1722-1730.

    Google Scholar 

  19. Cumming RC, Liu JM, Youssoufian H, Buchwald M. Suppression of apoptosis in hematopoietic factordependent progenitor cell lines by expression of the FAC gene. Blood 1996; 88: 4558-4567.

    Google Scholar 

  20. Aebi M, Fah J, Hurt N, et al. cDNA structure and regulation of two interferon-inducible human Mx proteins. Mol Cell Biol 1989; 9: 5062-5072

    Google Scholar 

  21. Horisberger MA, McMaster GK, Zeller H, et al. Cloning and sequence analyses of cDNAs for interferon-and virus-induced human Mx proteins reveal that they contain putative guanine-nucleotide binding sits: functional study of the corresponding gene promoter. J Virol 1990; 64: 1171-1181.

    Google Scholar 

  22. Li Y, Youssoufian H. MxA overexpression reveals a common genetic link in four Fanconi anemia complementation groups. J Clin Invest 1997; 11: 2873-2880.

    Google Scholar 

  23. Yoshida Y, Anzai N, Kawabata H. Apoptosis in myelodisplasia: a paradox or paradigm. Leukemia Res 1995; 19: 887-891.

    Google Scholar 

  24. Raza A, Mundle S, Shetty V, et al. Novel insights into the biology of the myelodysplastic syndromes: excessive apoptosis and the role of the cytokines. Int J Hematol 1996; 63: 265-278.

    Google Scholar 

  25. Lyman SD, Seaberg M, Hanna R, et al. Plasma/serum level of flt3 ligand are low in normal individuals and highly elevated in patients with Fanconi anemia and acquired aplastic anemia. Blood 1995; 86: 4091-4096.

    Google Scholar 

  26. Rey JP, Scott R, Mü ller H. Apoptosis is not involved in the hypersensitivity of Fanconi anemia cells to mitomycin C. Cancer Genet Cytogenet 1994; 75: 67-71.

    Google Scholar 

  27. Kruyt FAE, Dijkmans LM, Van der Beng TK, Joenje H. Fanconi anemia genes act to suppress a crosslinker-inducible p53-independent apoptosis pathway in lymphoblastoid cell lines. Blood 1996; 87: 938-948.

    Google Scholar 

  28. Kupfer GM, D'Andrea AD. The effect of the Fanconi anemia polypeptide, FAC, upon p53 induction and G2 checkpoint regulation. Blood 1996; 88: 1019-1025.

    Google Scholar 

  29. Xiang J, Chao DT, Korsmeyer SJ. BAX-induced cell death may not require interleukin 1b-converting enzyme-like proteases. Proc Natl Acad Sci USA 1996; 93: 14559-14563.

    Google Scholar 

  30. Clarke AA, Philpott NJ, Gordon-Smith EC, Rutherford TR. The sensitivity of Fanconi anaemia group C cells to apoptosis induced by mitomycib C is due to oxygen radical generation, not DNA crosslinking. Brit J Haematol 1997; 96: 240-247.

    Google Scholar 

  31. Guillouf C, et al. Fanconi anemia C protein acts at a switch between apoptosis and necrosis in mitomycin C-induced cell death. (Submitted)

  32. Monti D, Macchioni S, Guido M, et al. Resistance to apoptosis in Fanconi's anemia. FEBS letters 1997; 407: 365-369.

    Google Scholar 

  33. Duckworth-Rysiecki G, Taylor AMR. Effects of ionizing radiation on cells from Fanconi's anemia patients. Cancer Res 1985; 54: 416-420.

    Google Scholar 

  34. Gluckman E, Devergie A, Dutreix J. Radiosensitivity in Fanconi anemia: application to the conditioning regimen for bone marrow transplantation. Br J Hematol. 1983; 63: 189-199.

    Google Scholar 

  35. Whitney MA, Royle G, Low MJ, et al. Germ cell defects and hematopoietic hypersensitivity to γ-interferon in mice with a targeted disruption of the Fanconi anemia C gene. Blood 1996; 88: 49-58.

    Google Scholar 

  36. Rathbun RK, Faulkner GR, Ostroski MH, et al. Inactivation of the Fanconi anemia group C gene augments interferon-c-induced apoptotic response in hematopoietic cells. Blood 1997; 90: 974-985.

    Google Scholar 

  37. Voehringer DW, Story MD, O'Neil RG, Meyn RE. Modulating Ca2+ in radiation-induced apoptosis suppresses DNA fragmentation but does enhance clonogenic survival. Int J Radiat Biol 1997; 71: 237-243.

    Google Scholar 

  38. Leist M, Single B, Castoldi AF, Kü hnle S, Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: A switch in the decision between apoptosis and necrosis. J Exp Med 1997; 185: 1481-1486.

    Google Scholar 

  39. Eguchi Y, Shimizu S, Tsujimoto Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 1997; 57: 1835-1840.

    Google Scholar 

  40. Kroemer G. Mitochondrial implication in apoptosis. Towards an endosymbiont hypothesis of apoptosis evolution. Cell Death Differ 1997; 4: 443-456.

    Google Scholar 

  41. Remaclé J, Raes M, Toussaint O, Renard P, RaoG. Low levels of reactive oxygen species as modulators of cell function. Mut Res 1995; 316: 103-122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rosselli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosselli, F. Fanconi anaemia syndrome and apoptosis: state of the art. Apoptosis 3, 229–236 (1998). https://doi.org/10.1023/A:1009644722210

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009644722210

Navigation