Skip to main content
Log in

Some Properties of a Variance Components Model for Fine-Mapping Quantitative Trait Loci

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Identifying etiological variants for multifactorial traits by allelic association holds promise when many markers are available in close proximity. However, evidence for or against association at any particular marker does not provide any direct information about the influence of causal variants or the frequency of the etiologic allele(s). Recently, a variance components model of linkage and association was developed for quantitative traits which is sufficiently flexible to provide some insights into these issues. We show that this combined linkage/association model provides an estimate of the additive genetic variance of a trait that is attributable to disequilibrium between the marker and QTL. We use this estimate to construct approximate boundaries of the minimum level of disequilibrium between an observed marker and unobserved QTL and to delimit the permissible range of allele frequencies at the QTL based on available data at nearby markers. This information may facilitate fine-mapping studies of complex traits that aim to localize QTLs by assessment of association with many markers in a candidate region of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Abecasis, G. R., Cardon, L. R., and Cookson, W. O. C. M. (2000). A general test of association for quantitative traits in nuclear families. Am.J.Hum.Genet. 66:279-292.

    Google Scholar 

  • Allison, D. B. (1997). Transmission-disequilibrium tests for quantitative traits. Am.J.Hum.Genet. 60:676-690.

    Google Scholar 

  • Allison, D. B., Heo, M., Kaplan, N., and Martin, E. R. (1999a). Sibling-based tests of linkage and association for quantitative traits. A m.J.Hum.Genet. 64:1754-1763.

    Google Scholar 

  • Allison, D. B., Neale, M. C., Zannolli, R., Schork, N. J., Amos, C. I., et al. (1999b). Testing the robustness of the likelihood-ratio test in a variance-component quantitative-trait loci-mapping procedure. Am.J.Hum.Genet. 65:531-544.

    Google Scholar 

  • Amos, C. I. (1994). Robust variance-components approach for assessing genetic linkage in pedigrees. A m.J.Hum.Genet. 54: 535-543.

    Google Scholar 

  • Cardon, L. R. (2000). A family-based regression model of linkage disequilibrium for quantitative traits. Hum.Hered. 50: 350-358.

    Google Scholar 

  • Cargill, M., Altshuler, D., Ireland, J., Sklar, P., Ardlie, K., et al. (1999). Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genet. 22:231-238.

    Google Scholar 

  • Chakravarti, A. (1998). It's raining SNPs, hallelujah? Nature Genet.19:216-217.

    Google Scholar 

  • Falconer, D. S. (1981). Introduction to Quantitative Genetics, Longman Group, Harlow, U.K.

    Google Scholar 

  • Fulker, D. W., Cherny, S. S., Sham, P. C., and Hewitt, J. K. (1999). Combined linkage and association sib-pair analysis for quantitative traits. A m.J.Hum.Genet. 64:259-267.

    Google Scholar 

  • George, V., Tiwari, H. K., Zhu, X., and Elston, R. C. (1999). A test of transmission/disequilibrium for quantitative traits in pedigree data, by multiple regression. Am.J.Hum.Genet.65:236-245.

    Google Scholar 

  • Halushka, M. K., Fan, J. B., Bentley, K., Hsie, L., Shen, N., et al. (1999). Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nature Genet. 22:239-247.

    Google Scholar 

  • Hopper, J. L., and Mathews, J. D. (1982). Extensions to multivariate normal models for pedigree analysis. Ann.Hum.Genet.46:373-383.

    Google Scholar 

  • Keavney, B., McKenzie, C. A., Connell, J. M., Julier, C., Ratcliffe, P. J., et al. (1998). Measured haplotype analysis of the angiotensin-I converting enzyme gene. Hum.Mol.Genet. 7: 1745-1751.

    Google Scholar 

  • Kruglyak, L. (1999). Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nature Genet.22:139-144.

    Google Scholar 

  • Kruglyak, L., and Lander, E. S. (1995). Complete multipoint sib-pair analysis of qualitative and quantitative traits. Am.J.Hum.Genet.57:439-464.

    Google Scholar 

  • Lander, E. S. (1999). Array of hope. Nature Genet. 21:3-4.

    Google Scholar 

  • Lange, K., Westlake, J., and Spence, M. A. (1976). Extensions to pedigree analysis. III. Variance components by the scoring method. Ann.Hum.Genet. 39:485-491.

    Google Scholar 

  • Neale, M. C., and Cardon, L. R. (1992). Methodology for Genetic Studies of Twins and Families, Kluwer Academic Press, Boston.

    Google Scholar 

  • Nickerson, D. A., Taylor, S. L., Weiss, K. M., Clark, A. G., Hutchinson, R. G., et al. (1998). DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nature Genet.19:233-240.

    Google Scholar 

  • Rabinowitz, D. (1997). A transmission disequilibrium test for quantitative trait loci. Hum.Hered. 47:342-350.

    Google Scholar 

  • Rieder, M. J., Taylor, S. L., Clark, A. G., and Nickerson, D. A. (1999). Sequence variation in the human angiotensin converting enzyme. Nature Genet. 22:59-62.

    Google Scholar 

  • Risch, N., and Merikangas, K. (1996). The future of genetic studies of complex human diseases. Science 273:1516-1517.

    Google Scholar 

  • Searle, S. R., Casella, G., and McCulloch, C. E. (1992). Variance Components, John Wiley & Sons, New York.

    Google Scholar 

  • Sham, P. C., Cherny, S. S., Purcell, S., and Hewitt, J. K. (2000). Power of linkage versus association analysis of quantitative traits using variance components models for sibship data. Am.J.Hum.Genet. 66:1616-1630.

    Google Scholar 

  • Spielman, R. S., and Ewens, W. J. (1996). The TDT and other family-based tests for linkage disequilibrium and association. Am.J.Hum.Genet. 59:983-989.

    Google Scholar 

  • Spielman, R. S., McGinnis, R. E., and Ewens, W. J. (1993). Transmission test for linkage disequilibrium: The insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am.J.Hum.Genet. 52:506-516.

    Google Scholar 

  • Terwilliger, J. D., and Weiss, K. M. (1998). Linkage disequilibrium mapping of complex disease: Fantasy or reality? Curr.Opin.Biotechnol. 9:578-594.

    Google Scholar 

  • Weir, B. S. (1996). Genetic Data Analysis II, Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Weiss, K. M. (1993). Genetic Variation and Human Disease, Cambridge University Press, Cambridge.

    Google Scholar 

  • Weiss, K. M. (1996). Is there a paradigm shift in genetics? Lessons from the study of human diseases. Mol.Phylogenet.Evol.5:259-265.

    Google Scholar 

  • Xiong, M. M., Krushkal, J., and Boerwinkle, E. (1998). TDT statistics for mapping quantitative trait loci. Ann.Hum.Genet.62:431-452.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardon, L.R., Abecasis, G.R. Some Properties of a Variance Components Model for Fine-Mapping Quantitative Trait Loci. Behav Genet 30, 235–243 (2000). https://doi.org/10.1023/A:1001970425822

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001970425822

Navigation