Clinical research
A homoplasmic mitochondrial transfer Ribonucleic Acid mutation as a cause of maternally inherited hypertrophic cardiomyopathy

https://doi.org/10.1016/S0735-1097(03)00300-0Get rights and content
Under an Elsevier user license
open archive

Abstract

Objectives

The purpose of this study was to understand the clinical and molecular features of familial hypertrophic cardiomyopathy (HCM) in which a mitochondrial abnormality was strongly suspected.

Background

Defects of the mitochondrial genome are responsible for a heterogeneous group of clinical disorders, including cardiomyopathy. The majority of pathogenic mutations are heteroplasmic, with mutated and wild-type mitochondrial deoxyribonucleic acid (mtDNA) coexisting within the same cell. Homoplasmic mutations (present in every copy of the genome within the cell) present a difficult challenge in terms of diagnosis and assigning pathogenicity, as human mtDNA is highly polymorphic.

Methods

A detailed clinical, histochemical, biochemical, and molecular genetic analysis was performed on two families with HCM to investigate the underlying mitochondrial defect.

Results

Cardiac tissue from an affected child in the presenting family exhibited severe deficiencies of mitochondrial respiratory chain enzymes, whereas histochemical and biochemical studies of the skeletal muscle were normal. Mitochondrial DNA sequencing revealed an A4300G transition in the mitochondrial transfer ribonucleic acid (tRNA)Ilegene, which was shown to be homoplasmic by polymerase chain reaction/restriction fragment length polymorphism analysis in all samples from affected individuals and other maternal relatives. In a second family, previously reported as heteroplasmic for this base substitution, the mutation has subsequently been shown to be homoplasmic. The pathogenic role for this mutation was confirmed by high-resolution Northern blot analysis of heart tissue from both families, revealing very low steady-state levels of the mature mitochondrial tRNAIle.

Conclusions

This report documents, for the first time, that a homoplasmic mitochondrial tRNA mutation may cause maternally inherited HCM. It highlights the significant contribution that homoplasmic mitochondrial tRNA substitutions may play in the development of cardiac disease. A restriction of the biochemical defect to the affected tissue has important implications for the screening of patients with cardiomyopathy for mitochondrial disease.

Abbreviations

COX
cytochrome coxidase
HCM
hypertrophic cardiomyopathy
LHON
Leber’s hereditary optic neuropathy
LV
left ventricle or ventricular
mtDNA
mitochondrial deoxyribonucleic acid
mt-tRNAIle
mitochondrial transfer ribonucleic acid gene for isoleucine
PCR
polymerase chain reaction
RFLP
restriction fragment length polymorphism
SDH
succinate dehydrogenase

Cited by (0)

This work was supported by grants provided to Drs. Turnbull and Lightowlers from the Wellcome Trust, U.K., to Dr. Davidson from the American Heart Association, and to Dr. Giordano from Telethon-Italia.