Cell
Volume 110, Issue 3, 9 August 2002, Pages 327-338
Journal home page for Cell

Article
Human L1 Retrotransposition Is Associated with Genetic Instability In Vivo

https://doi.org/10.1016/S0092-8674(02)00839-5Get rights and content
Under an Elsevier user license
open archive

Abstract

Retrotransposons have shaped eukaryotic genomes for millions of years. To analyze the consequences of human L1 retrotransposition, we developed a genetic system to recover many new L1 insertions in somatic cells. Forty-two de novo integrants were recovered that faithfully mimic many aspects of L1s that accumulated since the primate radiation. Their structures experimentally demonstrate an association between L1 retrotransposition and various forms of genetic instability. Numerous L1 element inversions, extra nucleotide insertions, exon deletions, a chromosomal inversion, and flanking sequence comobilization (called 5′ transduction) were identified. In a striking number of integrants, short identical sequences were shared between the donor and the target site's 3′ end, suggesting a mechanistic model that helps explain the structure of L1 insertions.

Cited by (0)

8

Present address: Laboratory of Immunobiology, National Cancer Institute, Frederick, Maryland 21702.

9

Present address: Biogen, Inc., 14 Cambridge Center, Cambridge, Massachusetts 02142.

10

Present address: Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94702.