Skip to main content

Advertisement

Log in

Genetics of insulin resistance

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Insulin resistance, defined as the decreased ability of insulin to perform its biological functions, is likely to represent the primary physiologic defect underlying the insulin resistance syndrome (IRS), which includes insulin resistance/hyper-insulinemia, glucose intolerance and/or type 2 diabetes mellitus, visceral obesity, hypertension, and dyslipidemia. This constellation of traits is a leading cause of cardiovascular mortality and morbidity. Insulin sensitivity varies widely among individuals. Although environmental provocations including physical inactivity and caloric excess play an important role in the development of obesity and thus insulin resistance, epidemiologic and family studies show that there are also moderate genetic influences on the development of insulin resistance. Extreme forms of insulin resistance may be caused rarely by mutations in the genes for the insulin receptor and peroxisome proliferator-activated receptor γ. However, the genetic basis for common more moderate forms of insulin resistance is likely to be polygenic and heterogeneous. Evidence further suggests that gene variants may have phenotypic influences on more than one IRS trait (so-called pleiotrophy), which may explain, in part, the clustering of these traits.

This article reviews the evidence that insulin resistance has a genetic basis. Progress to date toward identifying specific gene variants are reviewed. Ultimately, the identification of specific gene variants that influence insulin resistance and other IRS traits will have profound influences on our understanding of the molecular and pathophysiologic basis of these disorders, from which new and more effective preventive and therapeutic interventions will be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Reaven GM: Banting Lecture 1988. Role of insulin resistance in human disease. Diabetes 1988, 37:1595–1607.

    Article  PubMed  CAS  Google Scholar 

  2. Stern MP: Diabetes and cardiovascular disease—the “common soil” hypothesis. Diabetes 1995, 44:369–374.

    Article  PubMed  CAS  Google Scholar 

  3. Mokdad AH, Ford ES, Bowman BA, et al.: Diabetes trends in the U.S.: 1990-1998. Diabetes Care 2000, 23:1278–1283. A widely quoted study describing the marked increase in the prevalence of type 2 diabetes across the United States over the past decade.

    Article  PubMed  CAS  Google Scholar 

  4. Nakae J, Kido Y, Accili D: Tissue-specific insulin resistance in type 2 diabetes: lessons from gene-targeted mice. Ann Med 2001, 33:22–27.

    PubMed  CAS  Google Scholar 

  5. Mauvais-Javis F, Kahn CR: Understanding the pathogenesis and treatment of insulin resistance and type 2 diabetes: what can we learn from transgenic and knockout mice? Diabetes Metab 2000, 26:433–448.

    Google Scholar 

  6. Pessin JE, Saltiel AR: Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest 2000, 106:165–169.

    PubMed  CAS  Google Scholar 

  7. Baumann CA, Saltiel AR: Spatial compartmentalization of signal transduction in insulin action. Bioessays 2001, 723:215–222.

    Article  PubMed  CAS  Google Scholar 

  8. LeRoith D, Zick Y: Recent advances in our understanding of insulin action and insulin resistance. Diabetes Care 2001, 24:588–597.

    Article  CAS  Google Scholar 

  9. Ribbon V, Printen JA, Hoffman NG, et al.: A novel multifunctional c-Cbl binding protein in insulin receptor. Mol Cell Biol 1998, 18:872–879.

    Google Scholar 

  10. Chiang SH, Baumann CA, Kanzaki M, et al.: Insulin-stimulated GLUT4 translocation requires the CAP dependent activation of the small GTP binding protein TC10. Nature 2001, 410: 944–948.

    Article  PubMed  CAS  Google Scholar 

  11. Pessin JE, Thurmond DC, Elmendorf JS, et al.: Molecular basis of insulin-stimulated GLUT4 vesicle trafficking. Location! Location! Location! J Biol Chem 1999, 274:2593–2596.

    Article  PubMed  CAS  Google Scholar 

  12. Debril MB, Renaud JP, Fajas L, Auwerx J: The pleiotropic functions of peroxisome proliferator-activated receptor gamma. J Mol Med 2001, 79:30–47.

    Article  PubMed  CAS  Google Scholar 

  13. Rosen ED, Spiegelman BM: PPARgamma: a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem 2001, 276:37731–37734.

    Article  PubMed  CAS  Google Scholar 

  14. Maddux BA, Goldfine ID: Membrane glycoprotein PC-1 inhibition of insulin receptor function occurs via direct interaction with the receptor alpha-subunit. Diabetes 2000, 49:13–19.

    Article  PubMed  CAS  Google Scholar 

  15. Taylor SI, Cama A, Accili D, et al.: Mutations in the insulin receptor gene. Endocrinol Rev 1992, 13:566–595.

    Article  CAS  Google Scholar 

  16. Hegele RA: Molecular basis of partial lipodystrophy and prospects for therapy. Trends Mol Med 2001, 9:204–208.

    Google Scholar 

  17. Cao H, Hegele RA: Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 2000, 9:109–112. Identification of mutations in the lamin A/C gene (LMNA) as the cause of FPLD.

    Article  PubMed  CAS  Google Scholar 

  18. Speckman RA, Garg A, Du F, et al.: Mutational and haplotype analyses of families with familial partial lipodystrophy (Dunnigan variety) reveal recurrent missense mutations in the globular C-terminal domain of lamin A/C. Am J Hum Genet 2000, 66:1192–1198.

    Article  PubMed  CAS  Google Scholar 

  19. Bonne G, Di Barletta MR, Varnous S, et al.: Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet 1999, 21: 285–288.

    Article  PubMed  CAS  Google Scholar 

  20. Fatkin D, MacRae C, Sasaki T, et al.: Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med 1999, 23:1715–1724.

    Article  Google Scholar 

  21. Seip M, Trygstad O: Generalized lipodystrophy, congenital and acquired (lipoatrophy). Acta Paediatr Suppl 1996, 413:2–18. Identification of mutations in a new gene, designated seipin, as the cause of approximately half of the cases of CGL.

    PubMed  CAS  Google Scholar 

  22. Magre J, Delepine M, Khallouf E, et al.: Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet 2001, 28:365–370.

    Article  PubMed  CAS  Google Scholar 

  23. Barroso I, Gurnell M, Crowley FEF, et al.: Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 1999, 402:880–883. Report of two rare mutations in PPARã as causes of severe insulin resistance, hypertension, and type 2 diabetes.

    PubMed  CAS  Google Scholar 

  24. Ristow M, Muller-Wieland D, Pfeiffer A, et al.: Obesity associ-ated with a mutation in a genetic regulator of adipocyte differentiation. N Engl J Med 1998, 339:953–959.

    Article  PubMed  CAS  Google Scholar 

  25. Shuldiner AR, Nguyen W, Kao WH, et al.: Pro115Gln peroxi-some proliferator-activated receptor-gamma and obesity. Diabetes Care 2000, 23:126–127.

    Article  PubMed  CAS  Google Scholar 

  26. Hamann A, Munzberg H, Buttron P, et al.: Missense variants in the human peroxisome proliferator-activated receptor-gamma2 gene in lean and obese subjects. Eur J Endocrinol 1999, 141:90–92.

    Article  PubMed  CAS  Google Scholar 

  27. Stern MP, Mitchell BD: Genetics of insulin resistance. In Insulin Resistance: The Metabolic Syndrome X. Edited by Reaven GM, Laws A Totowa, NJ: Humana Press; 1999:3–18.

    Google Scholar 

  28. Mayer EJ, Newman B, Austin MA, et al.: Genetic and environ-mental influences on insulin levels and the insulin resistance syndrome: an analysis of women twins. Am J Epidemiol 1996, 143:323–332.

    PubMed  CAS  Google Scholar 

  29. Narkiewicz K, Chrostowska M, Kuchata G, et al.: Genetic influences on insulinemia in normotensive twins. Am J Hypertens 1997, 10: 467–470.

    Article  PubMed  CAS  Google Scholar 

  30. Lillioja S, Mott DM, Zawadzki JK, et al.: In vivo insulin action is familial characteristic in nondiabetic Pima Indians. Diabetes 1987, 36:1329–1335.

    Article  PubMed  CAS  Google Scholar 

  31. Martin BC, Warram JH, Rosner B, et al.: Family clustering of insulin sensitivity. Diabetes 1992, 41: 850–854.

    Article  PubMed  CAS  Google Scholar 

  32. Haffner SM, Stern MP, Hazuda HP, et al.: Increased insulin concentrations in non-diabetic offspring of diabetic parents. N Engl J Med 1988, 319:1297–1301.

    Article  PubMed  CAS  Google Scholar 

  33. Elbein SC, Maxwell TM, Schumacher MC: Insulin and glucose levels and prevalence of glucose intolerance in pedigrees with multiple diabetic siblings. Diabetes 1991, 40:1024–1032.

    Article  PubMed  CAS  Google Scholar 

  34. Eriksson J, Franssila-Kallunki A, Ekstrand A, et al.: Early metabolic defects in persons at increased risk for non-insulin-dependent diabetes mellitus. N Engl J Med 1989, 321:337–343.

    Article  PubMed  CAS  Google Scholar 

  35. Gulli G, Ferrannini E, Stern M, et al.: The metabolic profile of NIDDM is fully established in glucose-tolerant offspring of two Mexican-American NIDDM parents. Diabetes 1992, 41: 1575–1586.

    Article  PubMed  CAS  Google Scholar 

  36. Mitchell BD, Kammerer CM, Blangero J, et al.: Genetic and environmental contributions to cardiovascular risk factors in Mexican Americans: The San Antonio Family Heart Study. Circulation 1996, 94:2159–2170.

    PubMed  CAS  Google Scholar 

  37. Mitchell BD, Kammerer CM, Mahaney MC, et al.: Genetic analysis of the IRS: pleiotropic effects of genes influencing insulin levels on lipoprotein and obesity measures. Atheroscler Throm Vasc Biol 1996, 16:281–288.

    CAS  Google Scholar 

  38. Hong Y, Pedersen NL, Brismar K, de Faire U: Genetic and environmental architecture of the features of the insulin-resistance syndrome. Am J Hum Genet 1997, 60:143–152.

    PubMed  CAS  Google Scholar 

  39. Silver K, Shuldiner AR: Candidate genes for type II diabetes mellitus. In Diabetes Mellitus: A Fundamental and Clinical Text, edn 2. Edited by LeRoith D et al. Philadelphia: Lippincott; 2000:709–719.

    Google Scholar 

  40. Elbein SC: Genetics of type 2 diabetes: an overview for the millennium. Diabetes Technol Ther 2000, 2:391–400.

    Article  PubMed  CAS  Google Scholar 

  41. Prochazka M, Lillioja S, Tait JF, et al.: Linkage of chromosomal markers on 4q with a putative gene determining maximal insulin action in Pima Indians. Diabetes 1993, 42:514–519.

    Article  PubMed  CAS  Google Scholar 

  42. Mitchell BD, Kammerer CM, O’Connell P, et al.: Evidence for linkage of postchallenge insulin levels with intestinal fatty acid-binding protein (FABP2) in Mexican-Americans. Diabetes 1995, 44:1046–1053.

    Article  PubMed  CAS  Google Scholar 

  43. Baier LJ, Sacchettini JC, Knowler WC, et al.: An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance. J Clin Invest 1995, 95:1281–1287.

    PubMed  CAS  Google Scholar 

  44. Yamada K, Yuan X, Ishiyama S, et al.: Association between Ala54Thr substitution of the fatty acid-binding protein 2 gene with insulin resistance and intra-abdominal fat thickness in Japanese men. Diabetologia 1997, 40:706–710.

    Article  PubMed  CAS  Google Scholar 

  45. Hayakawa T, Nagai Y, Nohara E, et al.: Variation of the fatty acid binding protein 2 gene is not associated with obesity and insulin resistance in Japanese subjects. Metabolism 1999, 48:655–657.

    Article  PubMed  CAS  Google Scholar 

  46. Sipilainen R, Uusitupa M, Heikkinen S, et al.: Variants in the human intestinal fatty acid binding protein 2 gene in obese subjects. J Clin Endocrinol Metab 1997, 82:2629–2632.

    Article  PubMed  CAS  Google Scholar 

  47. Rissanen J, Pihlajamaki J, Heikkinen S, et al.: The Ala54Thr polymorphism of the fatty acid binding protein 2 gene does not influence insulin sensitivity in Finnish nondiabetic and NIDDM subjects. Diabetes 1997, 46:711–712.

    PubMed  CAS  Google Scholar 

  48. Baier LJ, Bogardus C, Sacchettini JC: A polymorphism in the human intestinal fatty acid binding protein alters fatty acid transport across Caco-2 cells. J Biol Chem 1996, 271:10892–10896.

    Article  PubMed  CAS  Google Scholar 

  49. Agren JJ, Valve R, Vidgren H, et al.: Postprandial lipemic response is modified by the polymorphism at codon 54 of the fatty acid-binding protein 2 gene. Arterioscler Thromb Vasc Biol 1998, 18:1606–1610.

    PubMed  CAS  Google Scholar 

  50. Xia J, Scherer SW, Cohen PT, et al.: A common variant in PPP1R3 associated with insulin resistance and type 2 diabetes. Diabetes 1998, 47:1519–1524.

    Article  PubMed  CAS  Google Scholar 

  51. Maegawa H, Shi K, Hidaka H, et al.: The 3’-untranslated region polymorphism of the gene for skeletal muscle-specific glycogen-targeting subunit of protein phosphatase 1 in the type 2 diabetic Japanese population. Diabetes 1999, 48:1469–1472.

    Article  PubMed  CAS  Google Scholar 

  52. Walston J, Silver K, Bogardus C, et al.: Time of onset of non-insulin-dependent diabetes mellitus and genetic variation in the beta 3-adrenergic-receptor gene. N Engl J Med 1995, 333:343–347.

    Article  PubMed  CAS  Google Scholar 

  53. Widen E, Lehto M, Kanninen T, et al.: Association of a polymorphism in the beta 3-adrenergic-receptor gene with features of the insulin resistance syndrome in Finns. N Engl J Med 1995, 333:348–351.

    Article  PubMed  CAS  Google Scholar 

  54. Kadowaki H, Kazuki Y, Iwamoto K, et al.: A mutation in the beta 3-adrenergic receptor gene is associated with obesity and hyperinsulinemia in Japanese subjects. Biochem Biophys Res Commun 1995, 215: 555–560.

    Article  PubMed  CAS  Google Scholar 

  55. Mitchell BD, Blangero J, Comuzzie AG, et al.: A paired sibling analysis of the beta-3 adrenergic receptor and obesity in Mexican Americans. J Clin Invest 1998, 101: 584–587. Study using a paired sibling design, which shows greater fat mass in Mexican Americans with the Trp64Arg ADRB3 variant compared to their siblings without the variant.

    PubMed  CAS  Google Scholar 

  56. Garcia-Rubi E, Starling RD, Tchernof A, et al.: Trp64Arg variant of the beta3-adrenoceptor and insulin resistance in obese postmenopausal women.J Clin Endocrinol Metab 1998, 83:4002–4005.

    Article  PubMed  CAS  Google Scholar 

  57. Ghosh S, Langefeld CD, Ally D, et al.: The W64R variant of the beta3-adrenergic receptor is not associated with type II diabetes or obesity in a large Finnish sample. Diabetologia 1999, 42:238–244.

    Article  PubMed  CAS  Google Scholar 

  58. Gagnon J, Mauriege P, Roy S, et al.: The Trp64Arg mutation of the beta3 adrenergic receptor gene has no effect on obesity phenotypes in the Quebec Family Study and Swedish Obese Subjects cohorts. J Clin Invest 1996, 98:2086–2093.

    PubMed  CAS  Google Scholar 

  59. Clement K, Ruiz J, Cassard-Doulcier AM, et al.: Additive effect of Aà G (-3826) variant of the uncoupling protein gene and the Trp64Arg mutation of the beta 3-adrenergic receptor gene on weight gain in morbid obesity. Int J Obes Relat Metab Disord 1996, 20:1062–1066.

    PubMed  CAS  Google Scholar 

  60. Dionne IJ, Turner AN, Tchernof A, et al.: Identification of an interactive effect of beta3- and alpha2b-adrenoceptor gene polymorphisms on fat mass in Caucasian women. Diabetes 2001, 44:115–122. Study in which a gene-gene interaction was examined; specifically, this study shows that subjects with variants in both the α2b- and β3-adrenoceptor genes have significantly greater fat mass than subjects with neither or one of the variants.

    Google Scholar 

  61. Hsueh WC, Cole SA, Shuldiner AR, et al.: Interactions between variants in the beta3-adrenergic receptor and peroxisome proliferator-activated receptor-gamma2 and obesity. Diabetes Care 2001, 24:672–677.

    Article  PubMed  CAS  Google Scholar 

  62. Li LS, Lonnqvist F, Luthman H, Arner P: Phenotypic character-ization of the Trp64Arg polymorphism in the beta 3- adrenergic receptor gene in normal weight and obese subjects. Diabetologia 1996, 39:857–860.

    Article  PubMed  CAS  Google Scholar 

  63. Hoffstedt J, Poirier O, Thorne A, et al.: Polymorphism of the human beta3-adrenoceptor gene forms a well-conserved haplotype that is associated with moderate obesity and altered receptor function. Diabetes 1999, 48:203–205

    Article  PubMed  CAS  Google Scholar 

  64. Umekawa T, Yoshida T, Sakane N, et al.: Trp64Arg mutation of beta3-adrenoceptor gene deteriorates lipolysis induced by beta3-adrenoceptor agonist in human omental adipocytes. Diabetes 1999, 48:117–120.

    Article  PubMed  CAS  Google Scholar 

  65. Candelore MR, Deng L, Tota LM, et al.: Pharmacological characterization of a recently described human beta 3- adrenergic receptor mutant. Endocrinology 1996, 137:2638–2641

    Article  PubMed  CAS  Google Scholar 

  66. Pietri-Rouxel F, St John Manning B, Gros J, Strosberg AD: The biochemical effect of the naturally occurring Trp64→Arg mutation on human beta3-adrenoceptor activity. Eur J Biochem 1997, 247:1174–1179.

    Article  PubMed  CAS  Google Scholar 

  67. Yen C-J, Beamer BA, Negri C, et al.: Molecular scanning of the human peroxisome proliferator activated receptor gamma (hPPARgamma) gene in obese Caucasians: identification of a Pro12Ala PPARgamma2 missense mutation. Biochem Biophys Res Commun 1997, 241:270–274.

    Article  PubMed  CAS  Google Scholar 

  68. Deeb SS, Fajas L, Nemoto M, et al.: A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet 1998, 20:284–287.

    Article  PubMed  CAS  Google Scholar 

  69. Masugi J, Tamori Y, Mori H, et al.: Inhibitory effect of proline-to-alanine substitution at codon 12 of peroxisome proliferator-activated receptor-gamma 2 on thiazolidinedione-induced adipogenesis. Biochem Biophys Res Commun 2000, 269:178–182.

    Article  CAS  Google Scholar 

  70. Beamer BA, Yen C-J, Andersen RE, et al.: Association of the Pro12Ala variant in the peroxisome proliferator-activated receptor-gamma2 (PPARgamma2) gene with obesity in two Caucasian populations. Diabetes 1998, 47:1806–1808.

    Article  PubMed  CAS  Google Scholar 

  71. Meirhaeghe A, Fajas L, Helbecque N, et al.: Impact of the peroxisome proliferator activated receptor gamma2 Pro12Ala polymorphism on adiposity, lipids and non-insulin-dependent diabetes mellitus. Int J Obes Relat Metab Disord 2000, 24:195–199.

    Article  PubMed  CAS  Google Scholar 

  72. Cole SA, Mitchell BD, Hsueh WC, et al.: The Pro12Ala variant of peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) is associated with measures of obesity in Mexican Americans. Int J Obes Relat Metab Disord 2000, 24:522–524.

    Article  PubMed  CAS  Google Scholar 

  73. Mori Y, Kim-Motoyama H, Katakura T, et al.: Effect of the Pro12Ala variant of the human peroxisome proliferator-activated receptor gamma2 gene on adiposity, fat distribution and insulin sensitivity in Japanese men. Biochem Biophys Res Commun 1998, 251:195–198.

    Article  PubMed  CAS  Google Scholar 

  74. Clement K, Hercberg S, Passinge B, et al.: The Pro115Gln and Pro12Ala PPAR gamma gene mutations in obesity and type 2 diabetes. Int J Obes Relat Metab Disord 2000, 24:391–393.

    Article  PubMed  CAS  Google Scholar 

  75. Ek J, Urhammer SA, Sorensen TIA, et al.: Homozygosity of the Pro12Ala variant of the peroxisome proliferation-activated receptor-gamma2 (PPAR-gamma-2): divergent modulating effects on body mass index in obese and Caucasian men. Diabetologia 1999, 42:892–895.

    Article  PubMed  CAS  Google Scholar 

  76. Luan J, Browne PO, Harding AH, et al.: Evidence for genenutrient interaction at the PPARgamma locus. Diabetes 2001, 50:686–689. A study in which a gene-environment interaction was examined; specifically, in subjects consuming a diet high in polyunsaturated fats, those with the Pro12Ala PPARy2 variant were significantly less obese than subjects without the PPARy2 variant. There were no differences between genotypes in subjects whose diets were lower in polyunsaturated fats.

    Article  PubMed  CAS  Google Scholar 

  77. Nicklas BJ, van Rossum EFC, Berman DM, et al.: Genetic variation in the peroxisome proliferator-activated receptor-gamma2 gene (Pro12Ala) affects metabolic responses to weight loss and subsequent weight gain. Diabetes 2001, 50:2172–2176.

    Article  PubMed  CAS  Google Scholar 

  78. Koch M, Rett K, Maerker E, et al.: The PPARgamma2 amino acid polymorphism Pro12Ala is prevalent in offspring of type II diabetic patients and is associated to increased insulin sensitivity in a subgroup of obese subjects. Diabetologia 1999, 42:758–762.

    Article  PubMed  CAS  Google Scholar 

  79. Hara K, Okada T, Tobe K, et al.: The Pro12Ala polymorphism in PPARgamma2 may confer resistance to type 2 diabetes. Biochem Biophys Res Commun 2000, 271:212–216.

    Article  PubMed  CAS  Google Scholar 

  80. Jacob S, Stumvoll M, Becker R, et al.: The PPARgamma2 polymorphism Pro12Ala is associated with better insulin sensitivity in the offspring of type 2 diabetic patients. Horm Metab Res 2000, 32:413–415.

    Article  PubMed  CAS  Google Scholar 

  81. Altshuler D, Hirschhorn JN, Klannemark M, et al.: The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 2000, 26:76–80. Meta-analysis showing that the Ala12 allele of PPARγ2 protects from type 2 diabetes. These findings are consistent with several other reports showing increased insulin sensitivity in subjects with the Ala12 allele.

    Article  PubMed  CAS  Google Scholar 

  82. Miles PD, Barak Y, He W, et al.: Improved insulin-sensitivity in mice heterozygous for PPAR-gamma deficiency. J Clin Invest 2000, 105: 287–292.

    PubMed  CAS  Google Scholar 

  83. Maddix BA, Sbraccia P, Kumakura S, et al.: Membrane glycoprotein PC-1 and insulin resistance in non-insulin-dependent diabetes mellitus. Nature 1995, 373:448–451.

    Article  Google Scholar 

  84. Pizzuti A, Frittitta L, Argiolas A, et al.: A polymorphism (K121Q) of the human glycoprotein PC-1 gene coding region is strongly associated with insulin resistance. Diabetes 1999, 48:1881–1884.

    Article  PubMed  CAS  Google Scholar 

  85. Gu HF, Almgren P, Lindholm E, et al.: Association between the human glycoprotein PC-1 gene and elevated glucose and insulin levels in a paired-sibling analysis. Diabetes 2000, 49:1601–1603.

    Article  PubMed  CAS  Google Scholar 

  86. Rasmussen SK, Urhammer SA, Pizzuti A, et al.: The K121Q variant of the human PC-1 gene is not associated with insulin resistance or type 2 diabetes among Danish Caucasians. Diabetes 2000, 49:1608–1611.

    Article  PubMed  CAS  Google Scholar 

  87. Almind K, Bjorbaek C, Vestergaard H, et al.: Amino acid polymorphisms of insulin receptor substrate-1 in non-insulin-dependent diabetes mellitus. Lancet 1993, 42:828–832.

    Article  Google Scholar 

  88. Ura S, Araki E, Kishikawa H, et al.: Molecular scanning of the insulin receptor substrate-1 (IRS-1) gene in Japanese patients with NIDDM: identification of five novel polymorphisms. Diabetologia 1996, 39:600–608.

    PubMed  CAS  Google Scholar 

  89. Laakso M, Malkki M, Kekalainen P, et al.: Insulin receptor substrate-variants in non-insulin-dependent diabetes. J Clin Invest 1994, 94:1141–1146.

    PubMed  CAS  Google Scholar 

  90. Imai Y, Fusco A, Suzuki Y, et al.: Variant sequences of insulin receptor substrate-1 in patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1994, 79:1655–1658.

    Article  PubMed  CAS  Google Scholar 

  91. Celi FS, Negri C, Tanner K, et al.: Molecular scanning for mutations in the insulin receptor substrate-1 (IRS-1) gene in Mexican Americans with Type 2 diabetes mellitus. Diabetes Metab Res Rev 1999, 16:370–377.

    Article  Google Scholar 

  92. Clausen JO, Hansen T, Bjorbaek C, et al.: Insulin resistance: interactions between obesity and a common variant of insulin receptor substrate-1. Lancet 1995, 346:397–402.

    Article  PubMed  CAS  Google Scholar 

  93. Hitman GA, Hawrami K, McCarthy MI, et al.: Insulin receptor substrate-1 gene mutations in NIDDM; implications for the study of polygenic diseases. Diabetologia 1995, 38:481–486.

    PubMed  CAS  Google Scholar 

  94. Hager J, Zouali H, Velho G, Froguel P: Insulin receptor substrate-1 (IRS-1) gene polymorphisms in French NIDDM families. Lancet 1993, 342:1430.

    Article  PubMed  CAS  Google Scholar 

  95. Almind K, Inoue G, Pedersen O, Kahn CR: A common amino acid polymorphism in insulin receptor substrate-1 causes impaired insulin signaling. Evidence from transfection studies. J Clin Invest 1996, 97:2569–2575.

    PubMed  CAS  Google Scholar 

  96. Yoshimura R, Araki E, Ura S, et al.: Impact of natural IRS-1 mutations on insulin signals. Diabetes 1997, 46:929–936.

    Article  PubMed  CAS  Google Scholar 

  97. Imai Y, Philippe N, Sesti G, et al.: Expression of variant forms of insulin receptor substrate-1 identified in patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1997, 82:4201–4207.

    Article  PubMed  CAS  Google Scholar 

  98. Hsueh W-C, Mitchell BD, Shuldiner AR: Use of genome scans to identify susceptibility genes for type 2 diabetes. In Genetics of Diabetes Mellitus. Edited by Lowe WL Jr. Dordrecht, the Netherlands: Kluwer Academic Publishers; 2000:231–250.

    Google Scholar 

  99. Horikawa Y, Oda N, Cox NJ, et al.: Genetic variation in the calpain 10 gene (CAPN10) is associated with type 2 diabetes mellitus. Nat Genet 2000, 26:163–175. Identification of NIDDM1 as the calpain-10 (CAPN10) gene through positional cloning.

    Article  PubMed  CAS  Google Scholar 

  100. Hanis CL, Boerwinkle E, Chakraborty R, et al.: A genome-wide search for human non-insulin-dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2. Nat Genet 1996, 13:161–166.

    Article  PubMed  CAS  Google Scholar 

  101. Garant M, Kao WHL, Brancati FL, et al.: SNP43 of calcium-activated neutral protease (CAPN10) is associated with type 2 diabetes in African Americans: The Atherosclerosis Risk in Communities (ARIC) Study. Diabetes 2001, in press.

  102. Evans JC, Frayling TM, Cassell PG, et al.: Studies of association between the gene for calpain-10 and type 2 diabetes mellitus in the United Kingdom. Am J Hum Genet 2001, 69:544–552.

    Article  PubMed  CAS  Google Scholar 

  103. Baier LJ, Permana PA, Yang X, et al.: A calpain-10 gene polymorphism is associated with reduced muscle mRNA levels and insulin resistance. J Clin Invest 2000, 106: R69-R73.

    PubMed  CAS  Google Scholar 

  104. Duggirala R, Blangero J, Almasy L, et al.: A major locus for fasting insulin concentrations and insulin resistance on chromosome 6q with strong pleiotropic effects on obesity-related phenotypes in nondiabetic Mexican Americans. Am J Hum Genet 2001, 68:1149–1164.

    Article  PubMed  CAS  Google Scholar 

  105. Watanabe RM, Ghosh S, Langefeld CD, et al.: The Finland-United States investigation of non-insulin-dependent diabetes mellitus genetics (FUSION) study. II. An autosomal genome scan for diabetes-related quantitative-trait loci. Am J Hum Genet 2000, 67:1186–1200.

    PubMed  CAS  Google Scholar 

  106. Krushkal J, Ferrell R, Mockrin SC, et al.: Genome-wide linkage analyses of systolic blood pressure using highly discordant siblings. Circulation 1999, 99:1407–1410.

    PubMed  CAS  Google Scholar 

  107. Rainwater DL, Almasy L, Blangero J, et al.: A genome search identifies major quantitative trait loci on human chromosomes 3 and 4 that influence cholesterol concentrations in small LDL particles. Arterioscler Thromb Vasc Biol 1999, 19:777–783.

    PubMed  CAS  Google Scholar 

  108. Hager J, Dina C, Francke S, et al.: A genome-wide scan for human obesity genes reveals a major susceptibility locus on chromosome 10. Nat Genet 1998, 20:304–308.

    Article  PubMed  CAS  Google Scholar 

  109. Hanson RL, Ehm MG, Pettitt DJ, et al.: An autosomal genomic scan for loci linked to type II diabetes mellitus and body-mass index in Pima Indians. Am J Hum Genet 1998, 63:1130–1138.

    Article  PubMed  CAS  Google Scholar 

  110. Iwasaki N, Wang Y-Q, Cox NJ, et al.: A genome-wise screen for type 2 diabetes susceptibility genes in Japanese. Presented at the 2nd Research Symposium on the Genetics of Diabetes. San Jose, CA; 1999.

  111. Pratley RE, Thompson DB, Prochazka M, et al.: An autosomal genomic scan for loci linked to prediabetic phenotypes in Pima Indians. J Clin Invest 1998, 101: 1757–1764.

    Article  PubMed  CAS  Google Scholar 

  112. Mitchell BD, Cole SA, Hsueh WC, et al.: Linkage of serum insulin concentrations to chromosome 3p in Mexican Americans. Diabetes 2000, 49:513–516.

    Article  PubMed  CAS  Google Scholar 

  113. Chagnon YC, Borecki IB, Perusse L, et al.: Genome-wide search for genes related to the fat-free body mass in the Quebec family study. Metabolism 2000, 49:203–207.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mercado, M.M., McLenithan, J.C., Silver, K.D. et al. Genetics of insulin resistance. Curr Diab Rep 2, 83–95 (2002). https://doi.org/10.1007/s11892-002-0063-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-002-0063-9

Keywords

Navigation