Skip to main content
Log in

A defect in the retromer accessory protein, SNX27, manifests by infantile myoclonic epilepsy and neurodegeneration

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

The composition of the neuronal cell surface dictates synaptic plasticity and thereby cognitive development. This remodeling of the synapses is governed by the endocytic network which internalize transmembrane proteins, then sort them back to the cell surface or carry them to the lysosome for degradation. The multi-protein retromer complex is central to this selection, capturing specific transmembrane proteins and remodeling the cell membrane to form isolated cargo-enriched transport carriers. We investigated a consanguineous family with four patients who presented in infancy with intractable myoclonic epilepsy and lack of psychomotor development. Using exome analysis, we identified a homozygous deleterious mutation in SNX27, which encodes sorting nexin 27, a retromer cargo adaptor. In western analysis of patient fibroblasts, the encoded mutant protein was expressed at an undetectable level when compared with a control sample. The patients’ presentation and clinical course recapitulate that reported for the SNX27 knock-out mouse. Since the cargo proteins for SNX27-mediated sorting include subunits of ionotropic glutamate receptors and endosome-to-cell surface synaptic insertion of AMPA receptors is severely perturbed in SNX27−/− neurons, it is proposed that at least part of the neurological aberrations observed in the patients is attributed to defective sorting of ionotropic glutamate receptors. SNX27 deficiency is now added to the growing list of neurodegenerative disorders associated with retromer dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anggono V, Huganir RL (2012) Regulation of AMPA receptor trafficking and synaptic plasticity. Curr Opin Neurobiol 22(3):461–469. doi:10.1016/j.conb.2011.12.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Huotari J, Helenius A (2011) Endosome maturation. EMBO J 30(17):3481–3500. doi:10.1038/emboj.2011.286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Burd C, Cullen PJ (2014) Retromer: a master conductor of endosome sorting. Cold Spring Harbor Perspect Biol 6 (2). doi:10.1101/cshperspect.a016774

  4. Kerr MC, Bennetts JS, Simpson F, Thomas EC, Flegg C, Gleeson PA, Wicking C, Teasdale RD (2005) A novel mammalian retromer component, Vps26B. Traffic 6(11):991–1001. doi:10.1111/j.1600-0854.2005.00328.x

    Article  CAS  PubMed  Google Scholar 

  5. Seaman MN, McCaffery JM, Emr SD (1998) A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J Cell Biol 142(3):665–681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Arighi CN, Hartnell LM, Aguilar RC, Haft CR, Bonifacino JS (2004) Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J Cell Biol 165(1):123–133. doi:10.1083/jcb.200312055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Carlton J, Bujny M, Peter BJ, Oorschot VM, Rutherford A, Mellor H, Klumperman J, McMahon HT, Cullen PJ (2004) Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high- curvature membranes and 3-phosphoinositides. Curr Biol: CB 14(20):1791–1800. doi:10.1016/j.cub.2004.09.077

    Article  CAS  PubMed  Google Scholar 

  8. Chen D, Xiao H, Zhang K, Wang B, Gao Z, Jian Y, Qi X, Sun J, Miao L, Yang C (2010) Retromer is required for apoptotic cell clearance by phagocytic receptor recycling. Science 327(5970):1261–1264. doi:10.1126/science.1184840

    Article  CAS  PubMed  Google Scholar 

  9. Seaman MN (2004) Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J Cell Biol 165(1):111–122. doi:10.1083/jcb.200312034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Temkin P, Lauffer B, Jager S, Cimermancic P, Krogan NJ, von Zastrow M (2011) SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nat Cell Biol 13(6):715–721. doi:10.1038/ncb2252

    Article  PubMed Central  PubMed  Google Scholar 

  11. Cullen PJ, Korswagen HC (2012) Sorting nexins provide diversity for retromer-dependent trafficking events. Nat Cell Biol 14(1):29–37. doi:10.1038/ncb2374

    Article  CAS  Google Scholar 

  12. Seaman MN, Gautreau A, Billadeau DD (2013) Retromer-mediated endosomal protein sorting: all WASHed up! Trends Cell Biol 23(11):522–528. doi:10.1016/j.tcb.2013.04.010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Fjorback AW, Seaman M, Gustafsen C, Mehmedbasic A, Gokool S, Wu C, Militz D, Schmidt V, Madsen P, Nyengaard JR, Willnow TE, Christensen EI, Mobley WB, Nykjaer A, Andersen OM (2012) Retromer binds the FANSHY sorting motif in SorLA to regulate amyloid precursor protein sorting and processing. J Neurosci: Off J Soc Neurosci 32(4):1467–1480. doi:10.1523/JNEUROSCI. 2272-11.2012

    Article  CAS  Google Scholar 

  14. Seaman MN (2007) Identification of a novel conserved sorting motif required for retromer-mediated endosome-to-TGN retrieval. J Cell Sci 120(Pt 14):2378–2389. doi:10.1242/jcs.009654

    Article  CAS  PubMed  Google Scholar 

  15. Tabuchi M, Yanatori I, Kawai Y, Kishi F (2010) Retromer-mediated direct sorting is required for proper endosomal recycling of the mammalian iron transporter DMT1. J Cell Sci 123(Pt 5):756–766. doi:10.1242/jcs.060574

    Article  CAS  PubMed  Google Scholar 

  16. Strochlic TI, Setty TG, Sitaram A, Burd CG (2007) Grd19/Snx3p functions as a cargo-specific adapter for retromer-dependent endocytic recycling. J Cell Biol 177(1):115–125. doi:10.1083/jcb.200609161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. van Weering JR, Sessions RB, Traer CJ, Kloer DP, Bhatia VK, Stamou D, Carlsson SR, Hurley JH, Cullen PJ (2012) Molecular basis for SNX-BAR-mediated assembly of distinct endosomal sorting tubules. EMBO J 31(23):4466–4480. doi:10.1038/emboj.2012.283

    Article  PubMed Central  PubMed  Google Scholar 

  18. van Weering JR, Verkade P, Cullen PJ (2012) SNX-BAR-mediated endosome tubulation is co-ordinated with endosome maturation. Traffic 13(1):94–107. doi:10.1111/j.1600-0854.2011.01297.x

    Article  PubMed  Google Scholar 

  19. Wassmer T, Attar N, Bujny MV, Oakley J, Traer CJ, Cullen PJ (2007) A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J Cell Sci 120(Pt 1):45–54. doi:10.1242/jcs.03302

    CAS  PubMed  Google Scholar 

  20. Wassmer T, Attar N, Harterink M, van Weering JR, Traer CJ, Oakley J, Goud B, Stephens DJ, Verkade P, Korswagen HC, Cullen PJ (2009) The retromer coat complex coordinates endosomal sorting and dynein-mediated transport, with carrier recognition by the trans-Golgi network. Dev Cell 17(1):110–122. doi:10.1016/j.devcel.2009.04.016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Reitz C (2014) The role of the retromer complex in aging-related neurodegeneration: a molecular and genomic review. Mol Genet Genomics: MGG. doi:10.1007/s00438-014-0939-9

    PubMed  Google Scholar 

  22. Willnow TE, Andersen OM (2013) Sorting receptor SORLA—a trafficking path to avoid Alzheimer disease. J Cell Sci 126(Pt 13):2751–2760. doi:10.1242/jcs.125393

    Article  CAS  PubMed  Google Scholar 

  23. Kajii Y, Muraoka S, Hiraoka S, Fujiyama K, Umino A, Nishikawa T (2003) A developmentally regulated and psychostimulant-inducible novel rat gene mrt1 encoding PDZ-PX proteins isolated in the neocortex. Mol Psychiatry 8(4):434–444. doi:10.1038/sj.mp.4001258

    Article  CAS  PubMed  Google Scholar 

  24. Ghai R, Mobli M, Norwood SJ, Bugarcic A, Teasdale RD, King GF, Collins BM (2011) Phox homology band 4.1/ezrin/radixin/moesin-like proteins function as molecular scaffolds that interact with cargo receptors and Ras GTPases. Proc Natl Acad Sci U S A 108(19):7763–7768. doi:10.1073/pnas.1017110108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Lunn ML, Nassirpour R, Arrabit C, Tan J, McLeod I, Arias CM, Sawchenko PE, Yates JR 3rd, Slesinger PA (2007) A unique sorting nexin regulates trafficking of potassium channels via a PDZ domain interaction. Nat Neurosci 10(10):1249–1259. doi:10.1038/nn1953

    Article  CAS  PubMed  Google Scholar 

  26. Teasdale RD, Collins BM (2012) Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: structures, functions and roles in disease. Biochem J 441(1):39–59. doi:10.1042/BJ20111226

    Article  CAS  PubMed  Google Scholar 

  27. Gallon M, Clairfeuille T, Steinberg F, Mas C, Ghai R, Sessions RB, Teasdale RD, Collins BM, Cullen PJ (2014) A unique PDZ domain and arrestin-like fold interaction reveals mechanistic details of endocytic recycling by SNX27-retromer. Proc Natl Acad Sci U S A 111(35):E3604–E3613. doi:10.1073/pnas.1410552111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Steinberg F, Gallon M, Winfield M, Thomas EC, Bell AJ, Heesom KJ, Tavare JM, Cullen PJ (2013) A global analysis of SNX27-retromer assembly and cargo specificity reveals a function in glucose and metal ion transport. Nat Cell Biol 15(5):461–471. doi:10.1038/ncb2721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Joubert L, Hanson B, Barthet G, Sebben M, Claeysen S, Hong W, Marin P, Dumuis A, Bockaert J (2004) New sorting nexin (SNX27) and NHERF specifically interact with the 5-HT4a receptor splice variant: roles in receptor targeting. J Cell Sci 117(Pt 22):5367–5379. doi:10.1242/jcs.01379

    Article  CAS  PubMed  Google Scholar 

  30. Lauffer BE, Melero C, Temkin P, Lei C, Hong W, Kortemme T, von Zastrow M (2010) SNX27 mediates PDZ-directed sorting from endosomes to the plasma membrane. J Cell Biol 190(4):565–574. doi:10.1083/jcb.201004060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Balana B, Maslennikov I, Kwiatkowski W, Stern KM, Bahima L, Choe S, Slesinger PA (2011) Mechanism underlying selective regulation of G protein-gated inwardly rectifying potassium channels by the psychostimulant-sensitive sorting nexin 27. Proc Natl Acad Sci U S A 108(14):5831–5836. doi:10.1073/pnas.1018645108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Bauch C, Koliwer J, Buck F, Honck HH, Kreienkamp HJ (2014) Subcellular sorting of the G-protein coupled mouse somatostatin receptor 5 by a network of PDZ-domain containing proteins. PLoS One 9(2):e88529. doi:10.1371/journal.pone.0088529

    Article  PubMed Central  PubMed  Google Scholar 

  33. Munoz MB, Slesinger PA (2014) Sorting nexin 27 regulation of G protein-gated inwardly rectifying K(+) channels attenuates in vivo cocaine response. Neuron 82(3):659–669. doi:10.1016/j.neuron.2014.03.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. McGough IJ, Steinberg F, Gallon M, Yatsu A, Ohbayashi N, Heesom KJ, Fukuda M, Cullen PJ (2014) Identification of molecular heterogeneity in SNX27-retromer-mediated endosome-to-plasma-membrane recycling. J Cell Sci 127(22):4940–4953. doi:10.1242/jcs.156299

    Article  PubMed Central  PubMed  Google Scholar 

  35. Cai L, Loo LS, Atlashkin V, Hanson BJ, Hong W (2011) Deficiency of sorting nexin 27 (SNX27) leads to growth retardation and elevated levels of N-methyl-D-aspartate receptor 2C (NR2C). Mol Cell Biol 31(8):1734–1747. doi:10.1128/MCB. 01044-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Hussain NK, Diering GH, Sole J, Anggono V, Huganir RL (2014) Sorting Nexin 27 regulates basal and activity-dependent trafficking of AMPARs. Proc Natl Acad Sci U S A 111(32):11840–11845. doi:10.1073/pnas.1412415111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Loo LS, Tang N, Al-Haddawi M, Dawe GS, Hong W (2014) A role for sorting nexin 27 in AMPA receptor trafficking. Nat Commun 5:3176. doi:10.1038/ncomms4176

    Article  PubMed Central  PubMed  Google Scholar 

  38. Wang X, Zhao Y, Zhang X, Badie H, Zhou Y, Mu Y, Loo LS, Cai L, Thompson RC, Yang B, Chen Y, Johnson PF, Wu C, Bu G, Mobley WC, Zhang D, Gage FH, Ranscht B, Zhang YW, Lipton SA, Hong W, Xu H (2013) Loss of sorting nexin 27 contributes to excitatory synaptic dysfunction by modulating glutamate receptor recycling in Down’s syndrome. Nat Med 19(4):473–480. doi:10.1038/nm.3117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Muhammad A, Flores I, Zhang H, Yu R, Staniszewski A, Planel E, Herman M, Ho L, Kreber R, Honig LS, Ganetzky B, Duff K, Arancio O, Small SA (2008) Retromer deficiency observed in Alzheimer’s disease causes hippocampal dysfunction, neurodegeneration, and Abeta accumulation. Proc Natl Acad Sci U S A 105(20):7327–7332. doi:10.1073/pnas.0802545105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Small SA, Kent K, Pierce A, Leung C, Kang MS, Okada H, Honig L, Vonsattel JP, Kim TW (2005) Model-guided microarray implicates the retromer complex in Alzheimer’s disease. Ann Neurol 58(6):909–919. doi:10.1002/ana.20667

    Article  CAS  PubMed  Google Scholar 

  41. Wen L, Tang FL, Hong Y, Luo SW, Wang CL, He W, Shen C, Jung JU, Xiong F, Lee DH, Zhang QG, Brann D, Kim TW, Yan R, Mei L, Xiong WC (2011) VPS35 haploinsufficiency increases Alzheimer’s disease neuropathology. J Cell Biol 195(5):765–779. doi:10.1083/jcb.201105109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Vardarajan BN, Bruesegem SY, Harbour ME, Inzelberg R, Friedland R, St George-Hyslop P, Seaman MN, Farrer LA (2012) Identification of Alzheimer disease-associated variants in genes that regulate retromer function. Neurobiol Aging 33(9):2231 e2215–2231 e2230. doi:10.1016/j.neurobiolaging.2012.04.02

    Google Scholar 

  43. Freeman CL, Hesketh G, Seaman MN (2014) RME-8 coordinates the activity of the WASH complex with the function of the retromer SNX dimer to control endosomal tubulation. J Cell Sci 127(Pt 9):2053–2070. doi:10.1242/jcs.144659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. McGough IJ, Steinberg F, Jia D, Barbuti PA, McMillan KJ, Heesom KJ, Whone AL, Caldwell MA, Billadeau DD, Rosen MK, Cullen PJ (2014) Retromer binding to FAM21 and the WASH complex is perturbed by the Parkinson disease-linked VPS35(D620N) mutation. Curr Biol: CB 24(14):1670–1676. doi:10.1016/j.cub.2014.06.024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Popoff V, Mardones GA, Bai SK, Chambon V, Tenza D, Burgos PV, Shi A, Benaroch P, Urbe S, Lamaze C, Grant BD, Raposo G, Johannes L (2009) Analysis of articulation between clathrin and retromer in retrograde sorting on early endosomes. Traffic 10(12):1868–1880. doi:10.1111/j.1600-0854.2009.00993.x

    Article  CAS  PubMed  Google Scholar 

  46. Shi A, Sun L, Banerjee R, Tobin M, Zhang Y, Grant BD (2009) Regulation of endosomal clathrin and retromer-mediated endosome to Golgi retrograde transport by the J-domain protein RME-8. EMBO J 28(21):3290–3302. doi:10.1038/emboj.2009.272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Gustavsson EK, Guella I, Trinh J, Szu-Tu C, Rajput A, Rajput AH, Steele JC, McKeown M, Jeon BS, Aasly JO, Farrer MJ (2014) Genetic variability of the retromer cargo recognition complex in parkinsonism. Mov Dis: Off J Mov Dis Soc. doi:10.1002/mds.26104

    Google Scholar 

  48. Vilarino-Guell C, Rajput A, Milnerwood AJ, Shah B, Szu-Tu C, Trinh J, Yu I, Encarnacion M, Munsie LN, Tapia L, Gustavsson EK, Chou P, Tatarnikov I, Evans DM, Pishotta FT, Volta M, Beccano-Kelly D, Thompson C, Lin MK, Sherman HE, Han HJ, Guenther BL, Wasserman WW, Bernard V, Ross CJ, Appel-Cresswell S, Stoessl AJ, Robinson CA, Dickson DW, Ross OA, Wszolek ZK, Aasly JO, Wu RM, Hentati F, Gibson RA, McPherson PS, Girard M, Rajput M, Rajput AH, Farrer MJ (2014) DNAJC13 mutations in Parkinson disease. Hum Mol Genet 23(7):1794–1801. doi:10.1093/hmg/ddt570

    Article  PubMed Central  PubMed  Google Scholar 

  49. Vilarino-Guell C, Wider C, Ross OA, Dachsel JC, Kachergus JM, Lincoln SJ, Soto-Ortolaza AI, Cobb SA, Wilhoite GJ, Bacon JA, Behrouz B, Melrose HL, Hentati E, Puschmann A, Evans DM, Conibear E, Wasserman WW, Aasly JO, Burkhard PR, Djaldetti R, Ghika J, Hentati F, Krygowska-Wajs A, Lynch T, Melamed E, Rajput A, Rajput AH, Solida A, Wu RM, Uitti RJ, Wszolek ZK, Vingerhoets F, Farrer MJ (2011) VPS35 mutations in Parkinson disease. Am J Hum Genet 89(1):162–167. doi:10.1016/j.ajhg.2011.06.001

    Article  PubMed Central  PubMed  Google Scholar 

  50. Zimprich A, Benet-Pages A, Struhal W, Graf E, Eck SH, Offman MN, Haubenberger D, Spielberger S, Schulte EC, Lichtner P, Rossle SC, Klopp N, Wolf E, Seppi K, Pirker W, Presslauer S, Mollenhauer B, Katzenschlager R, Foki T, Hotzy C, Reinthaler E, Harutyunyan A, Kralovics R, Peters A, Zimprich F, Brucke T, Poewe W, Auff E, Trenkwalder C, Rost B, Ransmayr G, Winkelmann J, Meitinger T, Strom TM (2011) A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet 89(1):168–175. doi:10.1016/j.ajhg.2011.06.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Gomez TS, Billadeau DD (2009) A FAM21-containing WASH complex regulates retromer-dependent sorting. Dev Cell 17(5):699–711. doi:10.1016/j.devcel.2009.09.009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Harbour ME, Breusegem SY, Seaman MN (2012) Recruitment of the endosomal WASH complex is mediated by the extended ‘tail’ of Fam21 binding to the retromer protein Vps35. Biochem J 442(1):209–220. doi:10.1042/BJ20111761

    Article  CAS  PubMed  Google Scholar 

  53. Jia D, Gomez TS, Billadeau DD, Rosen MK (2012) Multiple repeat elements within the FAM21 tail link the WASH actin regulatory complex to the retromer. Mol Biol Cell 23(12):2352–2361. doi:10.1091/mbc.E11-12-1059

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Follett J, Norwood SJ, Hamilton NA, Mohan M, Kovtun O, Tay S, Zhe Y, Wood SA, Mellick GD, Silburn PA, Collins BM, Bugarcic A, Teasdale RD (2014) The Vps35 D620N mutation linked to Parkinson’s disease disrupts the cargo sorting function of retromer. Traffic 15(2):230–244. doi:10.1111/tra.12136

    Article  CAS  PubMed  Google Scholar 

  55. Munsie LN, Milnerwood AJ, Seibler P, Beccano-Kelly DA, Tatarnikov I, Khinda J, Volta M, Kadgien C, Cao LP, Tapia L, Klein C, Farrer MJ (2014) Retromer-dependent neurotransmitter receptor trafficking to synapses is altered by the Parkinson's Disease VPS35 mutation p.D620N. Hum Mol Genet. doi:10.1093/hmg/ddu582

    PubMed Central  Google Scholar 

  56. Zavodszky E, Seaman MN, Moreau K, Jimenez-Sanchez M, Breusegem SY, Harbour ME, Rubinsztein DC (2014) Mutation in VPS35 associated with Parkinson’s disease impairs WASH complex association and inhibits autophagy. Nat Commun 5:3828. doi:10.1038/ncomms4828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Freeman C, Seaman MN, Reid E (2013) The hereditary spastic paraplegia protein strumpellin: characterisation in neurons and of the effect of disease mutations on WASH complex assembly and function. Biochim Biophys Acta 1832(1):160–173. doi:10.1016/j.bbadis.2012.10.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the patient’s family for participating in this work. M.G. is supported by a Wellcome Trust 4-year Ph.D. Studentship awarded through the Dynamic Cell Biology programme (083474). P.J.C. is supported by the Wellcome Trust (089928, 085743 and 104568), and the Biotechnology and Biological Sciences Research Council (BB/I011412/1).

Ethical standards statement

The experiments comply with the current laws of Israel.

Conflict of interest

All the coauthors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter J. Cullen or Orly Elpeleg.

Additional information

Nadirah Damseh and Chris M. Danson contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 15 kb)

ESM 2

(PDF 362 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damseh, N., Danson, C.M., Al-Ashhab, M. et al. A defect in the retromer accessory protein, SNX27, manifests by infantile myoclonic epilepsy and neurodegeneration. Neurogenetics 16, 215–221 (2015). https://doi.org/10.1007/s10048-015-0446-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-015-0446-0

Keywords

Navigation