Skip to main content

Advertisement

Log in

Expression of the connexin43- and connexin45-encoding genes in the developing and mature mouse inner ear

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Intercellular communication through gap junctions is crucial for proper functioning of the inner ear. Indeed, mutations in several connexin genes have been found to cause hearing loss. In the inner ear, only the cell distributions of connexin30 and connexin26 have been well documented. We took advantage of the lacZ reporter gene in Cx43 and Cx45 knock-out mice to study the expression of the connexin43 and connexin45 genes during the inner ear development. Expression of Cx43 and Cx45 in the inner ear was detected from embryonic days 15.5 and 17.5, respectively. Until the 1st week of life, Cx43 was highly expressed in the connective tissues, and weakly expressed in the immature sensory epithelium of the cochlea. From postnatal day 8, however, Cx43 was almost exclusively expressed in the bone of the otic capsule. During embryogenesis, Cx45 was expressed in epithelial and connective inner ear tissues. From birth onwards, Cx45 expression could be detected in some inner ear capillaries. Vascular expression thereafter increased and persisted in the adult. In the mature inner ear, Cx45 was expressed in the entire vasculature. These results indicate that connexin43 and connexin45 play a role in the otic capsule bone and the inner ear vascular system, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a–d
Fig. 2a–d
Fig. 3
Fig. 4a–e

Similar content being viewed by others

References

  • Ahmad S, Chen S, Lin X (2003a) Cellular distribution and molecular assembly of connexins in the inner ear of mice. ARO Abstr 442

  • Ahmad S, Chen S, Sun J, Lin X (2003b) Connexins 26 and 30 are co-assembled to form gap junctions in the mice cochlea. Biochem Biophys Res Commun 307:362–368

    Article  CAS  PubMed  Google Scholar 

  • Ando M, Takeuchi S (1998) Postnatal vascular development in the lateral wall of the cochlear duct of gerbils: quantitative analysis by electron microscopy and confocal laser microscopy. Hearing Res 123:148–156

    Article  CAS  Google Scholar 

  • Anniko M, Wikström S, Wroblewski R (1987) Microanalytic and light microscopic studies on the developing otic capsule. Acta Otolaryngol (Stockh) 104:429–438

    Google Scholar 

  • Becker D, McGonnell H, Makarenkova K, Patel C, Tickle J, Lorimer J, Green C (1999) Role for alpha1 connexin in morphogenesis of chick embryos revealed using a novel antisense approach. Dev Genet 24:33–42

    Article  CAS  PubMed  Google Scholar 

  • Bernex F, De Sepulveda P, Kress C, Elbaz C, Delouis C, Panthier J (1996) Sapial and temporal patterns of c-kit-expressing cells in WlacZ/+ and WlacZ/WlacZ mouse embryos. Development 10:3023–3033

    Google Scholar 

  • Civitelli R, Beyer E, Warlow P, Robertson A, Geist S, Steinberg T (1993) Connexin43 mediates direct intercellular communication in human osteoblastic cell network. J Clin Invest 91:1888–1896

    CAS  PubMed  Google Scholar 

  • Cohen-Salmon M, Ott T, Michel V, Hardelin J, Perfettini I, Eybalin M, Wu T, Marcus D, Wangemann P, Willecke K, Petit C (2002) Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr Biol 12:1106–1111

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Tannoudji M, Morello D, Babinet C (1992) Unexpected position-dependent expression of H-2 and β2-microglobulin/lacZ transgenes. Mol Reprod Dev 33:149–159

    CAS  PubMed  Google Scholar 

  • Dallos P (1996) Overview: cochlear neurobiology. In: Dallos P, Popper AN, Fay RR (eds) The cochlea, vol 8. Springer, New York, pp 1–43

  • Donahue H (2000) Gap junctions and biophysical regulation of cell differentiation. Bone 26:417–422

    Article  CAS  PubMed  Google Scholar 

  • Donahue H, McLeod K, Rubin C, Andersen J, Grine E, Hertzberg E, Brink P (1995) Cell-to-cell communication in osteoblastic networks: cell line-dependent hormonal regulation of gap junction function. J Bone Miner Res 10:881–889

    CAS  PubMed  Google Scholar 

  • Evans W, Martin P (2002) Gap junctions: structure and function (review). Mol Membr Biol 19:121–136

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi T, Kimura RS, Paul DL, Adams JC (1995) Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol 191:101–118

    PubMed  Google Scholar 

  • Krüger O, Plum A, Kim J-S, Winterhager E, Maxeiner S, Hallas G, Kirchhoff S, Traub O, Lamers W, Willecke K (2000) Defective vascular development in connexin 45-deficient mice. Development 127:4179–4193

    CAS  PubMed  Google Scholar 

  • Lautermann J, Franck H-G, Jahnke K, Traub O, Winterhager E (1999) Developmental expression patterns of connexin-26 and -30 in the rat cochlea. Dev Genet 25:306–311

    PubMed  Google Scholar 

  • Lecanda F, Towler D, Ziambaras K, Cheng S-L, Koval M, Steinberg T, Civitelli R (1998) Gap junctional communication modulates gene expression in osteoblastic cells. Mol Biol Cell 9:2249–2258

    CAS  PubMed  Google Scholar 

  • Lecanda F, Warlow P, Sheikh S, Furlan F, Steinberg T, Civitelli R (2000) Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. J Cell Biol 151:931–943

    Article  CAS  PubMed  Google Scholar 

  • Liu XZ, Xia XJ, Adams J, Chen ZY, Welch KO, Tekin M, Ouyang XM, Kristiansen A, Pandya A, Balkany T, Arnos KS, Nance WE (2001) Mutations in GJA1 (connexin43) are associated with non-syndromic autosomal recessive deafness. Hum Mol Genet 25:2945–2951

    Article  Google Scholar 

  • Marcus D, Thalmann R, Marcus N (1978) Respiratory rate and ATP content of stria vascularis of guinea pig in vitro. Laryngoscope 88:1825–1835

    CAS  PubMed  Google Scholar 

  • Marziano N, Casalotti S, Portelli A, Becker D, Forge A (2003a) Mutations in the gene for connexin26 (GJB2) that cause hearing loss have a dominant negative effect on connexin 30. Hum Mol Genet 12:805–812

    Article  CAS  PubMed  Google Scholar 

  • Marziano N, Jagger D, Casalotti S, Becker D, Forge A (2003b) The inner ear contains heteromeric channels composed of Cx26 and Cx30 and deafness related mutations in Cx26 have a dominant negative effect on Cx30. International Gap Junction Conference 101

  • McGonnell IM, Green CR, Tickle C, Becker DL (2001) Connexin43 gap junction protein plays an essential role in morphogenesis of the embryonic chick face. Dev Dyn 222:420–438

    Article  CAS  PubMed  Google Scholar 

  • Michel V, Hardelin J, Petit C (2003) Molecular mechanism of a frequent genetic form of deafness. N Engl J Med 349:716–717

    Article  PubMed  Google Scholar 

  • Paznekas W, Boyadjiev S, Shapiro R, Daniels O, Wollnik B, Keegan C, Innis J, Dinulos M, Christian C, Hannibal M, Jabs E (2003) Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet 72:408–418

    Article  CAS  PubMed  Google Scholar 

  • Rabionet R, Lopez-Bigas N, Arbones ML, Estivill X (2002) Connexin mutations in hearing loss, dermatological and neurological disorders. Trends Mol Med 8:205–212

    Article  CAS  PubMed  Google Scholar 

  • Reaume A, de Sousa P, Kulkarni S, Langille B, Zhu D, Davies T, Juneja S, Kidder G, Rossant J (1995) Cardiac malformation in neonatal mice lacking connexin 43. Science 267:1881–1884

    Google Scholar 

  • Schirrmacher K, Schmitz I, Winterhager E, Traub O, Brummer F, Jones D, Bingmann D (1992) Characterization of gap junctions between osteoblast-like cells in culture. Calcif Tissue Int 51:285–290

    CAS  PubMed  Google Scholar 

  • Simon A, Goodenough D (1998) Diverse functions of vertebrate gap junctions. Trends Cell Biol 8:477–483

    CAS  PubMed  Google Scholar 

  • Stains J, Lecanda F, Screen J, Towler D, Civitelli R (2003) Gap junctional communication modulates transcription by altering the recruitment of Sp1 and Sp3 to connexin-response elements in osteoblast promoters. J Biol Chem 278:24377–24387

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Takamatsu T, Oyamada M (2003) Expression of gap junction protein Connexin43 in the adult rat cochlea: comparison with Connexin26. J Histochem Cytochem 51:903–912

    CAS  PubMed  Google Scholar 

  • Takeuchi S, Ando M (1998) Dye-coupling of melanocytes with endothelial cells and pericytes in the cochlea of gerbils. Cell Tissue Res 293:271–275

    CAS  PubMed  Google Scholar 

  • Takeuchi S, Ando M, Sato T, Kakigi A (2001) Three-dimensional and ultrastructural relationships between intermediate cells and capillaries in the gerbil stria vascularis. Hearing Res 155:103–112

    Article  CAS  Google Scholar 

  • Teubner B, Michel V, Pesch J, Lautermann J, Cohen-Salmon M, Söhl G, Janhke K, Winterhager E, Heberhold C, Hardelin J, Petit C, Willecke K (2003) Connexin30 (GjB6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Hum Mol Genet 12:13–21

    Article  CAS  PubMed  Google Scholar 

  • Theis M, de Wit C, Schlaeger T, Eckardt D, Krüger O, Döring B, Risau W, Deutsch U, Pohl U, Willecke K (2001) General and conditional replacement of connexin43-coding DNA by a lacZ reporter gene for cell-autonomous analysis of expression. Genesis 29:1–13

    Article  CAS  PubMed  Google Scholar 

  • Wangemann P (2002) K+ cycling and the endocochlear potential. Hearing Res 165:1–9

    Article  CAS  Google Scholar 

  • Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Guldenagel M, Deutsch U, Sohl G (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 383:725–737

    CAS  PubMed  Google Scholar 

  • Xia A, Ikeda K, Katori Y, Oshima T, Kikuchi T, Takasaka T (2000) Expression of connexin31 in the developing mouse cochlea. Neuroreport 11:2449–2453

    CAS  PubMed  Google Scholar 

  • Zhang W, Grenn C, Stott S (2002) Bone morphogenetic protein-2 modulation of chondrogenic differentiation in vitro involves gap junction-mediated intercellular communication. J Cell Physiol 193:233–243

    Article  CAS  PubMed  Google Scholar 

  • Zhao HB, Santos-Sacchi J (2000) Voltage gating of gap junctions in cochlear supporting cells: evidence for nonhomotypic channels. J Membr Biol 175:17–24

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Francisco J. del Castillo and Jean-Pierre Hardelin for helpful discussions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martine Cohen-Salmon.

Additional information

This study was supported by the EEC (contract QLG2-CT-1999-00988) and Association Française contre les Myopathies (grant 8871). Work in the Bonn Laboratory was supported by the German Research Association (SFB 284, C3 as well as WI 270/25-1/2), by the Fritz Thyssen Foundation and by Funds of the Chemical Industry to K.W.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen-Salmon, M., Maxeiner, S., Krüger, O. et al. Expression of the connexin43- and connexin45-encoding genes in the developing and mature mouse inner ear. Cell Tissue Res 316, 15–22 (2004). https://doi.org/10.1007/s00441-004-0861-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-004-0861-2

Keywords

Navigation