Skip to main content
Log in

Disruptions of the novel KIAA1202 gene are associated with X-linked mental retardation

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

The extensive heterogeneity underlying the genetic component of mental retardation (MR) is the main cause for our limited understanding of the aetiology of this highly prevalent condition. Hence we set out to identify genes involved in MR. We investigated the breakpoints of two balanced X;autosome translocations in two unrelated female patients with mild/moderate MR and found that the Xp11.2 breakpoints disrupt the novel human KIAA1202 (hKIAA1202) gene in both cases. We also identified a missense exchange in this gene, segregating with the Stocco dos Santos XLMR syndrome in a large four-generation pedigree but absent in >1,000 control X-chromosomes. Among other phenotypic characteristics, the affected males in this family present with severe MR, delayed or no speech, seizures and hyperactivity. Molecular studies of hKIAA1202 determined its genomic organisation, its expression throughout the brain and the regulation of expression of its mouse homologue during development. Transient expression of the wild-type KIAA1202 protein in HeLa cells showed partial colocalisation with the F-actin based cytoskeleton. On the basis of its domain structure, we argue that hKIAA1202 is a new member of the APX/Shroom protein family. Members of this family contain a PDZ and two ASD domains of unknown function and have been shown to localise at the cytoskeleton, and play a role in neurulation, cellular architecture, actin remodelling and ion channel function. Our results suggest that hKIAA1202 may be important in cognitive function and/or development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aspenstrom P (1997) A Cdc42 target protein with homology to the non-kinase domain of FER has a potential role in regulating the actin cytoskeleton. Curr Biol 7:479–487

    Article  PubMed  CAS  Google Scholar 

  • Balch WE (1990) Molecular dissection of early stages of the eukaryotic secretory pathway. Curr Opin Cell Biol 2: 634–641

    Article  PubMed  CAS  Google Scholar 

  • Cenciarelli C, Chiaur DS, Guardavaccaro D, Parks W, Vidal M, Pagano M (1999) Identification of a family of human F-box proteins. Curr Biol 9: 1177–1179

    Article  PubMed  CAS  Google Scholar 

  • den Dunnen JT, Antonarakis SE (2001) Nomenclature for the description of human sequence variations. Hum Genet 109: 121–124

    Article  PubMed  CAS  Google Scholar 

  • Gedeon AK, Donnelly AJ, Mulley JC, Kerr B, Turner G (1996) How many X-linked genes for non-specific mental retardation (MRX) are there?. Am J Med Genet 64: 158–162

    Article  PubMed  CAS  Google Scholar 

  • Gertler FB, Niebuhr K, Reinhard M, Wehland J, Soriano P (1996) Mena, a relative of VASP and Drosophila enabled, is implicated in the control of microfilament dynamics. Cell 87: 227–239

    Article  PubMed  CAS  Google Scholar 

  • Griffith KJ, Chan EK, Lung CC, Hamel JC, Guo X, Miyachi K, Fritzler MJ (1997) Molecular cloning of a novel 97-kd Golgi complex autoantigen associated with Sjogren’s syndrome. Arthritis Rheum 40: 1693–1702

    Article  PubMed  CAS  Google Scholar 

  • Haigo SL, Hildebrand JD, Harland RM, Wallingford JB (2003) Shroom induces apical constriction and is required for hingepoint formation during neural tube closure. Curr Biol 13: 2125–2137

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand JD, Soriano P (1999) Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice. Cell 99: 485–497

    Article  PubMed  CAS  Google Scholar 

  • International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431: 931–945

    Article  Google Scholar 

  • Kalscheuer VM, Freude K, Musante L, Jensen LR, Yntema HG, Gecz J, Sefiani A, Hoffmann K, Moser B, Haas S, Gurok U, Haesler S, Aranda B, Nshedjan A, Tzschach A, Hartmann N, Roloff TC, Shoichet S, Hagens O, Tao J, Van Bokhoven H, Turner G, Chelly J, Moraine C, Fryns JP, Nuber U, Hoeltzenbein M, Scharff C, Scherthan H, Lenzner S, Hamel BC, Schweiger S, Ropers HH (2003) Mutations in the polyglutamine binding protein 1 gene cause X-linked mental retardation. Nat Genet 35: 313–315

    Article  PubMed  CAS  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157: 105–132

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Brush J, Stewart TA (1999) NSP1 defines a novel family of adaptor proteins linking integrin and tyrosine kinase receptors to the c-Jun N-terminal kinase/stress-activated protein kinase signaling pathway. J Biol Chem 274: 10047–10052

    Article  PubMed  CAS  Google Scholar 

  • Nagase T, Ishikawa K, Kikuno R, Hirosawa M, Nomura N, Ohara O (1999) Prediction of the coding sequences of unidentified human genes. XV. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res 6: 337–345

    Article  PubMed  CAS  Google Scholar 

  • Ropers HH, Hamel BC (2005) X-linked mental retardation. Nat Rev Genet 6: 46–57

    Article  PubMed  CAS  Google Scholar 

  • Ropers HH, Hoeltzenbein M, Kalscheuer V, Yntema H, Hamel B, Fryns JP, Chelly J, Partington M, Gecz J, Moraine C (2003) Nonsyndromic X-linked mental retardation: where are the missing mutations? Trends Genet 19: 316–320

    Article  PubMed  CAS  Google Scholar 

  • Schiaffino MV, Bassi MT, Rugarli EI, Renieri A, Galli L, Ballabio A (1995) Cloning of a human homologue of the Xenopus laevis APX gene from the ocular albinism type 1 critical region. Hum Mol Genet 4: 373–382

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Du Sart D (1992) Functional disomies of the X chromosome influence the cell selection and hence the X inactivation pattern in females with balanced X-autosome translocations: a review of 122 cases. Am J Med Genet 42: 161–169

    Article  PubMed  CAS  Google Scholar 

  • Sheardown S, Norris D, Fisher A, Brockdorff N (1996) The mouse Smcx gene exhibits developmental and tissue specific variation in degree of escape from X inactivation. Hum Mol Genet 5: 1355–1360

    Article  PubMed  CAS  Google Scholar 

  • Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA (1995) An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 23: 1087–1088

    Article  PubMed  CAS  Google Scholar 

  • Songyang Z, Fanning AS, Fu C, Xu J, Marfatia SM, Chishti AH, Crompton A, Chan AC, Anderson JM, Cantley LC (1997) Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275: 73–77

    Article  PubMed  CAS  Google Scholar 

  • Staub O, Verrey F, Kleyman TR, Benos DJ, Rossier BC, Kraehenbuhl JP (1992) Primary structure of an apical protein from Xenopus laevis that participates in amiloride-sensitive sodium channel activity. J Cell Biol 119: 1497–1506

    Article  PubMed  CAS  Google Scholar 

  • Stevenson RE, Procopio-Allen AM, Schroer RJ, Collins JS (2003) Genetic syndromes among individuals with mental retardation. Am J Med Genet A 123: 29–32

    Article  PubMed  Google Scholar 

  • Stevenson RE, Schwartz CE (2002) Clinical and molecular contributions to the understanding of X-linked mental retardation. Cytogenet Genome Res 99: 265–275

    Article  PubMed  CAS  Google Scholar 

  • Stocco dos Santos RC, Castro NH, Lillia Holmes A, Becak W, Tackels-Horne D, Lindsey CJ, Lubs HA, Stevenson RE, Schwartz CE (2003) Stocco dos Santos X-linked mental retardation syndrome: clinical elucidation and localization to Xp11.3-Xq21.3. Am J Med Genet 118A: 255–259

    Article  Google Scholar 

  • Tarpey P, Parnau J, Blow M, Woffendin H, Bignell G, Cox C, Cox J, Davies H, Edkins S, Holden S, Korny A, Mallya U, Moon J, O’Meara S, Parker A, Stephens P, Stevens C, Teague J, Donnelly A, Mangelsdorf M, Mulley J, Partington M, Turner G, Stevenson R, Schwartz C, Young I, Easton D, Bobrow M, Futreal PA, Stratton MR, Gecz J, Wooster R, Raymond FL (2004) Mutations in the DLG3 gene cause nonsyndromic X-linked mental retardation. Am J Hum Genet 75: 318–324

    Article  PubMed  CAS  Google Scholar 

  • Tian L, Nelson DL, Stewart DM (2000) Cdc42-interacting protein 4 mediates binding of the Wiskott–Aldrich syndrome protein to microtubules. J Biol Chem 275: 7854–7861

    Article  PubMed  CAS  Google Scholar 

  • Warburton D (1991) De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints. Am J Hum Genet 49: 995–1013

    PubMed  CAS  Google Scholar 

  • World Health Organisation (2001) The world health report 2001. Mental health: new understanding, new hope

  • Zhang M, Wang W (2003) Organization of signaling complexes by PDZ-domain scaffold proteins. Acc Chem Res 36: 530–538

    Article  PubMed  CAS  Google Scholar 

  • Zuckerman JB, Chen X, Jacobs JD, Hu B, Kleyman TR, Smith PR (1999) Association of the epithelial sodium channel with Apx and alpha-spectrin in A6 renal epithelial cells. J Biol Chem 274: 23286–23295

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all patients and their families. We would like to thank T. Nagase for the hKIAA1202 cDNA, M. Pagano for the hFBXO4 cDNA, A. Munnich for providing incontinentia pigmenti fibroblasts, N. Tang for screening Chinese controls, E. Flori for karyotyping patient B, A. Tzschach for collecting clinical information and S. Haas for computational support. U. Fischer, B. Moser, H. Madle, S. Freier and S. Pannetier rendered reliable technical assistance. This study was financed by the Fondation Jérome Lejeune, the Institut National de la Santé et de la Recherche Médicale, the Centre National de la Recherche Scientifique, the Université Louis Pasteur, the Hôpital Universitaire de Strasbourg, the South Carolina Department of Disabilities and Special Needs, the German Human Genome Program (01KW99087), the National Genome Research Network (01GR0105) and the 5th EU Framework (QLG3-CT-2002-01810). The Wilhelm Johannsen Centre for Functional Genome Research is established by the Danish National Research Foundation. A. D. was supported by a fellowship from the Ministère pour la Recherche et Technologie and C. E. S. by a grant from NICHD (HD26202)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Kalscheuer.

Additional information

O. Hagens and A. Dubos contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagens, O., Dubos, A., Abidi, F. et al. Disruptions of the novel KIAA1202 gene are associated with X-linked mental retardation. Hum Genet 118, 578–590 (2006). https://doi.org/10.1007/s00439-005-0072-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-005-0072-2

Keywords

Navigation