Skip to main content
Log in

TDT-association analysis of EKN1 and dyslexia in a Colorado twin cohort

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

A candidate gene, EKN1, was recently described in a cohort from Finland for the dyslexia locus on chromosome 15q, DYX1. This report described a (2;15) (q11;21) translocation disrupting EKN1 that cosegregated with dyslexia in a two-generation family. It also characterized a sequence polymorphism in the 5′ untranslated region and a missense mutation that showed significant association in 109 dyslexics compared to 195 controls (p=0.002 and p=0.006, respectively). To confirm these results we interrogated the same polymorphisms in a cohort of 150 nuclear families with dyslexia ascertained through the Colorado Learning Disabilities Research Center. Using QTDT analysis with nine individual quantitative tasks and two composite measures of reading performance, we could not replicate the reported association. We conclude that the polymorphisms identified in the Finland sample are unlikely to be functional DNA changes contributing to dyslexia, and that if variation in EKN1 is causal such changes are more likely to be in regulatory regions that were not sequenced in this study. Alternatively, the published findings of association with markers in EKN1 may reflect linkage disequilibrium with variation in another gene(s) in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abecasis GR, Cookson WO, Cardon LR (2000) Pedigree tests of transmission disequilibrium. Eur J Hum Genet 8:545–551

    Article  PubMed  CAS  Google Scholar 

  • Allison DB (1997) Transmission-disequilibrium tests for quantitative traits. Am J Hum Genet 60:676–690

    PubMed  CAS  Google Scholar 

  • Bisgaard ML, Eiberg H, Moller N, Niebuhr E, Mohr J (1987) Dyslexia and chromosome 15 heteromorphism: negative lod score in a Danish material. Clin Genet 32:118–119

    PubMed  CAS  Google Scholar 

  • Cope NA, Hill G, van den Bree M, Harold D, Moskvina V, Green EK, Owen MJ, Williams J, O’Donovan MC (2005) No support for association between dyslexia susceptibility 1 candidate 1 and developmental dyslexia. Mol Psychiatry 10:237–238

    Article  PubMed  CAS  Google Scholar 

  • Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, Sun Z, Zong Q, Du Y, Du J, Driscoll M, Song W, Kingsmore SF, Egholm M, Lasken RS (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA 99:5261–5266

    Article  PubMed  CAS  Google Scholar 

  • DeFries JC, Fulker DW (1985) Multiple regression analysis of twin data. Behav Genet 15:467–473

    Article  PubMed  CAS  Google Scholar 

  • DeFries JC, Fulker DW, LaBuda MC (1987) Evidence for a genetic aetiology in reading disability of twins. Nature 329:537–539

    Article  PubMed  CAS  Google Scholar 

  • DeFries JC, Filipek PA, Fulker DW, Olson RK, Pennington BF, Smith SD, Wise BW (1997) Colorado learning disabilities research center. Learn Disabil: Multidisciplinary J 8:7–19

    Google Scholar 

  • Dunn LM, Markwardt FC (1970) Peabody individual achievement test. Examiner’s manual. American Guidance Service, Circle Pines, MN

    Google Scholar 

  • Gayán J, Smith SD, Cherny SS, Cardon LR, Fulker DW, Brower AM, Olson RK, Pennington BF, DeFries JC (1999) Quantitative-trait locus for specific language and reading deficits on chromosome 6p. Am J Hum Genet 64:157–164

    Article  PubMed  Google Scholar 

  • Grigorenko EL, Wood FB, Meyer MS, Hart LA, Speed WC, Shuster A, Pauls DL (1997) Susceptibility loci for distinct components of developmental dyslexia on chromosomes 6 and 15. Am J Hum Genet 60:27–39

    PubMed  CAS  Google Scholar 

  • Marino C, Giorda R, Vanzin L, Nobile M, Lorusso ML, Baschirotto C, Riva L, Molteni M, Battaglia M (2004) A locus on 15q15-15qter influences dyslexia: further support from a transmission/disequilibrium study in an Italian speaking population. J Med Genet 41:42–46

    Article  PubMed  CAS  Google Scholar 

  • Morris DW, Robinson L, Turic D, Duke M, Webb V, Milham C, Hopkin E, Pound K, Fernando S, Easton M, Hamshere M, Williams N, McGuffin P, Stevenson J, Krawczak M, Owen MJ, O’Donovan MC, Williams J (2000) Family-based association mapping provides evidence for a gene for reading disability on chromosome 15q. Hum Mol Genet 9:843–848

    Article  PubMed  CAS  Google Scholar 

  • Nopola-Hemmi J, Taipale M, Haltia T, Lehesjoki AE, Voutilainen A, Kere J (2000) Two translocations of chromosome 15q associated with dyslexia. J Med Genet 37:771–775

    Article  PubMed  CAS  Google Scholar 

  • Olson R, Wise B, Conners F, Rack J, Fulker D (1989) Specific deficits in component reading and language skills: genetic and environmental influences. J Learn Disabil 22:339–348

    Article  PubMed  CAS  Google Scholar 

  • Rabin M, Wen XL, Hepburn M, Lubs HA, Feldman E, Duara R (1993) Suggestive linkage of developmental dyslexia to chromosome 1p34–p36. Lancet 342:178

    Article  PubMed  CAS  Google Scholar 

  • Scerri TS, Fisher SE, Francks C, MacPhie IL, Paracchini S, Richardson AJ, Stein JF, Monaco AP (2004) Putative functional alleles of DYX1C1 are not associated with dyslexia susceptibility in a large sample of sibling pairs from the UK. J Med Genet 41:853–857

    Article  PubMed  CAS  Google Scholar 

  • Schulte-Korne G, Grimm T, Nothen MM, Muller-Myhsok B, Cichon S, Vogt IR, Propping P, Remschmidt H (1998) Evidence for linkage of spelling disability to chromosome 15. Am J Hum Genet 63:279–282

    Article  PubMed  CAS  Google Scholar 

  • Shaywitz SE, Shaywitz BA (2003) Dyslexia (specific reading disability). Pediatr Rev 24:147–153

    Article  PubMed  Google Scholar 

  • Smith SD, Kimberling WJ, Pennington BF, Lubs HA (1983) Specific reading disability: identification of an inherited form through linkage analysis. Science 219:1345–1347

    Article  PubMed  CAS  Google Scholar 

  • Sobel E, Lange K (1996) Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. Am J Hum Genet 58:1323–1337

    PubMed  CAS  Google Scholar 

  • Wechsler D (1974) Wechsler’s Intelligence scale for children-revised. Examiner’s manual. The Psychological Corporation, New York

    Google Scholar 

  • Wechsler D (1981) Wechsler adult intelligence scale-revised. Examiner’s manual. The Psychological Corporation, New York

    Google Scholar 

  • Wigg KG, Couto JM, Feng Y, Anderson B, Cate-Carter TD, Macciardi F, Tannock R, Lovett MW, Humphries TW, Barr CL (2004) Support for EKN1 as the susceptibility locus for dyslexia on 15q21. Mol Psychiatry 13:13

    Google Scholar 

Download references

Acknowledgments

Support for JRG and HM is from the Charles H. Hood Foundation (Boston, MA), The Robert Leet and Clara Guthrie Patterson Trust (Hartford, CT), and NIH R01 NS43530. Support for MH is from NIH R01 NS43530. The Colorado Learning Disability Research Center (SDS, RKO, BFP, JCD) is funded by NIH-NICHD 5P50HD027802 to J.C. DeFries, and SDS and BFG were further funded by NIH-NICHD RO1 HD-NS34812.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey R. Gruen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, H., Hager, K., Held, M. et al. TDT-association analysis of EKN1 and dyslexia in a Colorado twin cohort. Hum Genet 118, 87–90 (2005). https://doi.org/10.1007/s00439-005-0017-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-005-0017-9

Keywords

Navigation