Skip to main content
Log in

Mapping genes controlling hematocrit in the spontaneously hypertensive rat

  • Original Contribution
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The genes that determine the baseline hematocrit level in humans and experimental animals are unknown. The spontaneously hypertensive rat (SHR), the most widely used animal model of human essential hypertension, exhibits an increased hematocrit when compared with the normotensive Brown Norway (BN-Lx) strain (0.54 ± 0.02 vs. 0.44 ± 0.02, p < 0.01). Distribution of hematocrit values among recombinant inbred (RI) strains derived from SHR and BN-Lx progenitors was continuous, which suggests a polygenic mode of inheritance. The narrow heritability of the hematocrit was estimated to be 0.32. The Eno2 marker on Chromosome (Chr) 4 showed the strongest association (p < 00001) with the observed variability of hematocrit among RI strains. The erythropoietin (Epo) gene, originally reported to be syntenic with Eno2, has been mapped to Chr 12, thus excluding it as a potential candidate gene for the increased hematocrit in the SHR. The current linkage data extend homologies between rat, mouse, and human chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Belknap JK, Mitchell SR, O’Toole LA, Helms ML, Crabbe JC (1996) Type I and type II error rates for quantitative trait loci (QTL) mapping studies using recombinant inbred mouse strains. Behav Genet 26, 149–160

    Article  PubMed  CAS  Google Scholar 

  • Bottger A, van Lith HA, Kren V, Krenová D, Bílá V, Vorlícek J, Zídek V, Musilová A, Zdobinská M, Wang J-M, van Zutphen LFM, Kurtz TW, Pravenec M (1996) Quantitative trait loci influencing cholesterol and phospholipid phenotypes map to chromosomes that contain genes regulating blood pressure in the spontaneously hypertensitve rat. J Clin Invest 98, 856–862

    Article  PubMed  CAS  Google Scholar 

  • Brushi G, Minari M, Bruschi ME, Tacinelli L, Milani B, Cavatorta A, Borghetti A (1986) Similarities of essential and spontaneous hypertension: volume and number of red blood cells. Hypertension 8, 983–989

    Google Scholar 

  • Cirillo M, Lauranzi M, Trevisan M (1992) Hematocrit, blood pressure, and hypertension. The Gubbio population study. Hypertension 20, 319–326

    PubMed  CAS  Google Scholar 

  • Huang C, Davis G, Johns EJ (1993). Role of haematocrit in mediating the actions of chronic erythropoietin treatment on blood pressure and renal haemodynamics in the rat. Clin Sci 85, 717–724

    PubMed  CAS  Google Scholar 

  • Klingmuller U, Lorenz U, Cantley LC, Neel BG, Lodish HF (1995) Specific recruitment of SH-PTP1 to the erythropoietin receptor causes in-activation of JAK2 and termination of proliferative signals. Cell 80, 729–738

    Article  PubMed  CAS  Google Scholar 

  • Kozak CA, Bucan M, Goffinet A, Stephenson DA (1996) Mouse chromosome 5. Mamm Genome 6(Suppl), S97-S112

    PubMed  CAS  Google Scholar 

  • Letcher G, Bergentz SE, Bjure J, Wilhelmsen L (1966) Hematocrit, plasma protein, and viscosity in early hypertensive disease. Am Heart J 72, 165–176

    Article  Google Scholar 

  • Letcher RL, Chien S, Pickering TG, Laragh JH (1983) Elevated blood viscosity in patients with borderline essential hypertension. Hypertension 5, 757–762

    PubMed  CAS  Google Scholar 

  • Levan G, Szpirer J, Szpirer C, Klinga K, Hanson C, Islam Q (1991) The gene map of the Norway rat (Rattus norvegicus) and comparative mapping with mouse and man. Genomics 10, 699–718

    Article  PubMed  CAS  Google Scholar 

  • Maes M, Scharpe S, Cooreman W, Wauters A, Neels H, Verkerk R, De Meyer F, D’Hondt P, Peeters D, Cosyns P (1995) Components of biological, including seasonal, variation in hematological measurements and plasma fibrinogen concentrations in normal humans. Experientia 51, 141–149

    Article  PubMed  CAS  Google Scholar 

  • McDonough JR, James CG, Garrison GE, Stubb SC, Lichtman M, Hefelfinger DC (1965) The relationship of hematocrit to cardiovascular states of health in the Negro and white population of Evans County, Georgia. J Chronic Dis 18, 243–257

    Article  PubMed  CAS  Google Scholar 

  • Moore KJ, Elliot RW (1996) Mouse chromosome 6. Mamm Genome 6(Suppl), S113-S134

    PubMed  CAS  Google Scholar 

  • Nagao M, Suga H, Okano M, Masuda S, Narita H, Ikura K, Sasaki R (1992) Nucleotide sequence of rat erythropoietin. Biochim Biophys Acta 1171, 99–102

    PubMed  CAS  Google Scholar 

  • Neumann PE (1990) Two-locus linkage analysis using recombinant inbred strains and Bayes’ theorem. Genetics 126, 277–284

    PubMed  CAS  Google Scholar 

  • Plomin R, McClearn, GE (1993) Quantitative trait loci (QTL) analyses and alcohol-related behaviors. Behav Genet 23, 197–211

    Article  PubMed  CAS  Google Scholar 

  • Pravenec M, Klír P, Kren V, Zicha J, Kuneš J (1989) An analysis of spontaneous hypertension in spontaneously hypertensive rats by means of new recombinant inbred strains. J Hypertens 7, 217–222

    Article  PubMed  CAS  Google Scholar 

  • Pravenec M, Gauguier D, Schott J-J, Buard J, Kren V, Bílá V, Szpirer C, Szpirer J, Wang JM, Huang H, St. Lezin E, Spence MA, Flodman A, Printz M, Lathrop GM, Vergnaud G, Kurtz TW (1996) A genetic linkage map of the rat derived from recombinant inbred strains. Mamm Genome 7, 117–127

    Article  PubMed  CAS  Google Scholar 

  • Sen S, Hoffman GC, Stowe NT, Smeby RR, Bumpus FM (1972) Eryth-rocytosis in spontaneously hypertensive rats. J Clin Invest 51, 710–714

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker CB, Mitsock LD (1986) Murine erythropoietin gene: cloning, expression, and human gene homology. Mol Cell Biol 6, 849–858

    PubMed  CAS  Google Scholar 

  • Smith S, Julius S, Jamerson K, Amerena J, Schork N (1994) Hematocrit levels and physiologic factors in relationship to cardiovascular risk in Tacumseh, Michigan. J Hypertens 12, 455–462

    Article  PubMed  CAS  Google Scholar 

  • Wannamethee G, Shaper AG (1994) Haematocrit: relationship with blood lipids, blood pressure and other cardiovascular risk factors. Thromb Haemostasis 72, 58–64

    CAS  Google Scholar 

  • Whitfield JB, Martin NG (1985) Genetic and environmental influences on the size and number of cells in the blood. Genet Epidemiol 2, 133–144

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pravenec, M., Zidek, V., Zdobinska, M. et al. Mapping genes controlling hematocrit in the spontaneously hypertensive rat. Mammalian Genome 8, 387–389 (1997). https://doi.org/10.1007/s003359900452

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003359900452

Keywords

Navigation