Skip to main content

Advertisement

Log in

Glioblastoma, a Brief Review of History, Molecular Genetics, Animal Models and Novel Therapeutic Strategies

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Glioblastoma (GBM) is the most common and lethal primary brain tumor. Over the past few years tremendous genomic and proteomic characterization along with robust animal models of GBM have provided invaluable data that show that “GBM”, although histologically indistinguishable from one another, are comprised of molecularly heterogenous diseases. In addition, robust pre-clinical models and a better understanding of the core pathways disrupted in GBM are providing a renewed optimism for novel strategies targeting these devastating tumors. Here, we summarize a brief history of the disease, our current molecular knowledge, lessons from animal models and emerging concepts of angiogenesis, invasion, and metabolism in GBM that may lend themselves to therapeutic targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdollahi A, Lipson KE, Han X et al (2003a) SU5416 and SU6668 attenuate the angiogenic effects of radiation-induced tumor cell growth factor production and amplify the direct anti-endothelial action of radiation in vitro. Cancer Res 63:3755–3763

    PubMed  CAS  Google Scholar 

  • Abdollahi A, Lipson KE, Sckell A et al (2003b) Combined therapy with direct and indirect angiogenesis inhibition results in enhanced antiangiogenic and antitumor effects. Cancer Res 63:8890–8898

    PubMed  CAS  Google Scholar 

  • Aghi M, Chiocca EA (2005) Contribution of bone marrow-derived cells to blood vessels in ischemic tissues and tumors. Mol Ther 12:994–1005

    Article  PubMed  CAS  Google Scholar 

  • Agnihotri S, Wolf A, Munoz DM et al (2011) A GATA4-regulated tumor suppressor network represses formation of malignant human astrocytomas. J Exp Med 208:689–702

    Article  PubMed  CAS  Google Scholar 

  • Agnihotri S, Gajadhar AS, Ternamian C et al (2012) Alkylpurine-DNA-N-glycosylase confers resistance to temozolomide in xenograft models of glioblastoma multiforme and is associated with poor survival in patients. J Clin Invest 122:253–266

    Article  PubMed  CAS  Google Scholar 

  • Ahn G-O, Brown JM (2009) Role of endothelial progenitors and other bone marrow-derived cells in the development of the tumor vasculature. Angiogenesis 12:159–164

    Article  PubMed  CAS  Google Scholar 

  • Akiyama Y, Jung S, Salhia B et al (2001) Hyaluronate receptors mediating glioma cell migration and proliferation. J Neurooncol 53:115–127

    Article  PubMed  CAS  Google Scholar 

  • Alcantara Llaguno S, Chen J, Kwon CH et al (2009) Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 15:45–56

    Article  PubMed  CAS  Google Scholar 

  • An Z, Gluck CB, Choy ML et al (2010) Suberoylanilide hydroxamic acid limits migration and invasion of glioma cells in two and three dimensional culture. Cancer Lett 292:215–227

    Article  PubMed  CAS  Google Scholar 

  • Asahara T, Masuda H, Takahashi T et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228

    Article  PubMed  CAS  Google Scholar 

  • Bailey P, Cushing H (1926) A classification of the tumors of the Glioma group on histogenetic basis with correlated study of prognosis. Lipponcott, Philadelphia, p 175

    Google Scholar 

  • Batchelor TT, Sorensen AG, di Tomaso E et al (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95

    Article  PubMed  CAS  Google Scholar 

  • Batchelor TT, Duda DG, Di Tomaso E et al (2010) Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J Clin Oncol 28:2817–2823

    Article  PubMed  CAS  Google Scholar 

  • Bellail AC, Hunter SB, Brat DJ et al (2004) Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol 36:1046–1069

    Article  PubMed  CAS  Google Scholar 

  • Bello L, Francolini M, Marthyn P et al (2001) Alpha(v)beta3 and alpha(v)beta5 integrin expression in glioma periphery. Neurosurgery 49:380–389 (discussion 390)

    PubMed  CAS  Google Scholar 

  • Berens ME, Giese A (1999) “…those left behind.” Biology and oncology of invasive glioma cells. Neoplasia 1:208–219

    Article  PubMed  CAS  Google Scholar 

  • Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  PubMed  CAS  Google Scholar 

  • Bonnet S, Archer SL, Allalunis-Turner J et al (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51

    Article  PubMed  CAS  Google Scholar 

  • Brem S (1999) Angiogenesis and cancer control: from concept to therapeutic trial. Cancer Control 6:436–458

    PubMed  Google Scholar 

  • Browder T, Butterfield CE, Kraling BM et al (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60:1878–1886

    PubMed  CAS  Google Scholar 

  • Bruns CJ, Shrader M, Harbison MT et al (2002) Effect of the vascular endothelial growth factor receptor-2 antibody DC101 plus gemcitabine on growth, metastasis and angiogenesis of human pancreatic cancer growing orthotopically in nude mice. Int J Cancer 102:101–108

    Article  PubMed  CAS  Google Scholar 

  • Burrell K, Hill RP, Zadeh G (2012) High-resolution in vivo analysis of normal brain response to cranial irradiation. PLoS One 7:e38366

    Article  PubMed  CAS  Google Scholar 

  • Bustamante E, Pedersen PL (1977) High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc Natl Acad Sci USA 74:3735–3739

    Article  PubMed  CAS  Google Scholar 

  • Canadian Cancer Society’s Steering Committee (2010) Canadian cancer statistics 2010. Canadian Cancer Society, Toronto

    Google Scholar 

  • Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068

    Article  CAS  Google Scholar 

  • Carlson BL, Grogan PT, Mladek AC et al (2009) Radiosensitizing effects of temozolomide observed in vivo only in a subset of O6-methylguanine-DNA methyltransferase methylated glioblastoma multiforme xenografts. Int J Radiat Oncol Biol Phys 75:212–219

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P, Jain RK (2011a) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P, Jain RK (2011b) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10:417–427

    Article  PubMed  CAS  Google Scholar 

  • Casper KB, Jones K, McCarthy KD (2007) Characterization of astrocyte-specific conditional knockouts. Genesis 45:292–299

    Article  PubMed  CAS  Google Scholar 

  • Cavallaro U, Christofori G (2000) Molecular mechanisms of tumor angiogenesis and tumor progression. J Neurooncol 50:63–70

    Article  PubMed  CAS  Google Scholar 

  • CBTRUS (2010) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2004–2006. Central Brain Tumor Registry of the United States, Hinsdale http://www.cbtrusorg

  • Chen J, Kwon CH, Lin L et al (2009) Inducible site-specific recombination in neural stem/progenitor cells. Genesis 47:122–131

    Article  PubMed  CAS  Google Scholar 

  • Chetty C, Vanamala SK, Gondi CS et al (2012) MMP-9 induces CD44 cleavage and CD44 mediated cell migration in glioblastoma xenograft cells. Cell Signal 24:549–559

    Article  PubMed  CAS  Google Scholar 

  • Chow LM, Zhang J, Baker SJ (2008) Inducible cre recombinase activity in mouse mature astrocytes and adult neural precursor cells. Transgenic Res 17:919–928

    Article  PubMed  CAS  Google Scholar 

  • Choy H, Kim DW (2003) Chemotherapy and irradiation interaction. Semin Oncol 30:3–10

    Article  PubMed  CAS  Google Scholar 

  • Christofk HR, Vander Heiden MG, Harris MH et al (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–233

    Article  PubMed  CAS  Google Scholar 

  • Clarke MF, Dick JE, Dirks PB et al (2006) Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66:9339–9344

    Article  PubMed  CAS  Google Scholar 

  • Dai C, Celestino JC, Okada Y et al (2001) PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 15:1913–1925

    Article  PubMed  CAS  Google Scholar 

  • Dandy WE (1928) Removal of right cerebral hemisphere for certain tumors with hemiplegia: preliminary report. JAMA 90:3

    Article  Google Scholar 

  • Dang L, White DW, Gross S et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744

    Article  PubMed  CAS  Google Scholar 

  • Dang L, White DW, Gross S et al (2010) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 465:966

    Article  PubMed  CAS  Google Scholar 

  • Darland D (2001) Tumor angiogenesis and microcirculation, 1st edn. Marcel Dekker Inc., New York

    Google Scholar 

  • Deltour I, Johansen C, Auvinen A et al (2009) Time trends in brain tumor incidence rates in Denmark, Finland, Norway, and Sweden, 1974–2003. J Natl Cancer Inst 101:1721–1724

    Article  PubMed  Google Scholar 

  • Dietrich J, Diamond EL, Kesari S (2010) Glioma stem cell signaling: therapeutic opportunities and challenges. Exp Rev Anticancer Ther 10:709–722

    Article  Google Scholar 

  • Ding H, Roncari L, Shannon P et al (2001) Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res 61:3826–3836

    PubMed  CAS  Google Scholar 

  • Ding H, Shannon P, Lau N et al (2003) Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a RAS transgenic mouse astrocytoma model. Cancer Res 63:1106–1113

    PubMed  CAS  Google Scholar 

  • Dirks PB (2001) Glioma migration: clues from the biology of neural progenitor cells and embryonic CNS cell migration. J Neurooncol 53:203–212

    Article  PubMed  CAS  Google Scholar 

  • Dirks PB (2008) Brain tumor stem cells: bringing order to the chaos of brain cancer. J Clin Oncol 26:2916–2924

    Article  PubMed  Google Scholar 

  • Dong S, Nutt CL, Betensky RA et al (2005) Histology-based expression profiling yields novel prognostic markers in human glioblastoma. J Neuropathol Exp Neurol 64:948–955

    Article  PubMed  Google Scholar 

  • Du R, Lu KV, Petritsch C et al (2008) HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13:206–220

    Article  PubMed  CAS  Google Scholar 

  • Durairaj A, Mehra A, Singh RP et al (2000) Therapeutic angiogenesis. Cardiol Rev 8:279–287

    Article  PubMed  CAS  Google Scholar 

  • El Hallani S, Boisselier B, Peglion F et al (2010) A new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry. Brain 133:973–982

    Article  PubMed  Google Scholar 

  • Elder RH, Jansen JG, Weeks RJ et al (1998) Alkylpurine-DNA-N-glycosylase knockout mice show increased susceptibility to induction of mutations by methyl methanesulfonate. Mol Cell Biol 18:5828–5837

    PubMed  CAS  Google Scholar 

  • Farrell CJ, Plotkin SR (2007) Genetic causes of brain tumors: neurofibromatosis, tuberous sclerosis, von Hippel-Lindau, and other syndromes. Neurol Clin 25:925–946 (viii)

    Article  PubMed  Google Scholar 

  • Folkman J (1990) What is the evidence that tumors are angiogenesis-dependent? J Natl Cancer Inst 82:4–6

    Article  PubMed  CAS  Google Scholar 

  • Forsyth PA, Wong H, Laing TD et al (1999) Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer 79:1828–1835

    Article  PubMed  CAS  Google Scholar 

  • Furnari FB, Fenton T, Bachoo RM et al (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21:2683–2710

    Article  PubMed  CAS  Google Scholar 

  • Galli R, Binda E, Orfanelli U et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    Article  PubMed  CAS  Google Scholar 

  • Geng L, Donnelly E, McMahon G et al (2001) Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy. Cancer Res 61:2413–2419

    PubMed  CAS  Google Scholar 

  • Giese A, Westphal M (1996) Glioma invasion in the central nervous system. Neurosurgery 39:235–250 (discussion 250–252)

    Article  PubMed  CAS  Google Scholar 

  • Globus J, Strauss I (1925) Spongioblastoma multiforme. Arch Neurol Psychiatry 14:139–151

    Article  Google Scholar 

  • Godar S, Ince TA, Bell GW et al (2008) Growth-inhibitory and tumor-suppressive functions of p53 depend on its repression of CD44 expression. Cell 134:62–73

    Article  PubMed  CAS  Google Scholar 

  • Goldin N, Arzoine L, Heyfets A et al (2008) Methyl jasmonate binds to and detaches mitochondria-bound hexokinase. Oncogene 27:4636–4643

    Article  PubMed  CAS  Google Scholar 

  • Gorski DH, Mauceri HJ, Salloum RM et al (2003) Prolonged treatment with angiostatin reduces metastatic burden during radiation therapy. Cancer Res 63:308–311

    PubMed  CAS  Google Scholar 

  • Hadjipanayis CG, Van Meir EG (2009) Brain cancer propagating cells: biology, genetics and targeted therapies. Trends Mol Med 15:519–530

    Article  PubMed  CAS  Google Scholar 

  • Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    Article  PubMed  CAS  Google Scholar 

  • Hillen F, Griffioen AW (2007) Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev 26:489–502

    Article  PubMed  Google Scholar 

  • Holash J, Wiegand SJ, Yancopoulos GD (1999) New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoiesis and VEGF. Oncogene 18:5356–5362

    Article  PubMed  CAS  Google Scholar 

  • Holland EC (2001) Gliomagenesis: genetic alterations and mouse models. Nat Rev Genet 2:120–129

    Article  PubMed  CAS  Google Scholar 

  • Holland EC, Hively WP, DePinho RA et al (1998) A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 12:3675–3685

    Article  PubMed  CAS  Google Scholar 

  • Holland EC, Celestino J, Dai C et al (2000) Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 25:55–57

    Article  PubMed  CAS  Google Scholar 

  • Houck KA, Ferrara N, Winer J et al (1991) The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 5:1806–1814

    Article  PubMed  CAS  Google Scholar 

  • Ikawa M, Tanaka N, Kao WW et al (2003) Generation of transgenic mice using lentiviral vectors: a novel preclinical assessment of lentiviral vectors for gene therapy. Mol Ther 8:666–673

    Article  PubMed  CAS  Google Scholar 

  • Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989

    Article  PubMed  CAS  Google Scholar 

  • Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  PubMed  CAS  Google Scholar 

  • Jain RK, Carmeliet PF (2001) Vessels of death or life. Sci Am 285:38–45

    Article  PubMed  CAS  Google Scholar 

  • Jain RK, Tong RT, Munn LL (2007) Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res 67:2729–2735

    Article  PubMed  CAS  Google Scholar 

  • Kamijo T, Bodner S, van de Kamp E (1999) Tumor spectrum in ARF-deficient mice. Cancer Res 59:2217–2222

    PubMed  CAS  Google Scholar 

  • Kargiotis O, Rao JS, Kyritsis AP (2006) Mechanisms of angiogenesis in gliomas. J Neurooncol 78:281–293

    Article  PubMed  CAS  Google Scholar 

  • Kerbel RS (2000) Tumor angiogenesis: past, present and the near future. Carcinogenesis 21:505–515

    Article  PubMed  CAS  Google Scholar 

  • Kerbel R, Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2:727–739

    Article  PubMed  CAS  Google Scholar 

  • Kim JW, Tchernyshyov I, Semenza GL et al (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185

    Article  PubMed  CAS  Google Scholar 

  • King D, Yang G, Thompson MA et al (2002) Loss of neurofibromatosis-1 and p19(ARF) cooperate to induce a multiple tumor phenotype. Oncogene 21:4978–4982

    Article  PubMed  CAS  Google Scholar 

  • Kioi M, Vogel H, Schultz G et al (2010) Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest 120:694–705

    Article  PubMed  CAS  Google Scholar 

  • Kleber S, Sancho-Martinez I, Wiestler B et al (2008) Yes and PI3K bind CD95 to signal invasion of glioblastoma. Cancer Cell 13:235–248

    Article  PubMed  CAS  Google Scholar 

  • Kleihues P, Cavanee WK (2000) World Health Organization classification of tumors: pathology and genetic: tumors of the nervous system. IARC Press, Lyon

    Google Scholar 

  • Klein G, Weinhouse S (1974) Tumor angiogenesis. In: Folkman J (ed) Advances in cancer research. Academic Press, New York, pp 43–52

    Google Scholar 

  • Kozin SV, Boucher Y, Hicklin DJ et al (2001) Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts. Cancer Res 61:39–44

    PubMed  CAS  Google Scholar 

  • Kozin SV, Winkler F, Garkavtsev I et al (2007) Human tumor xenografts recurring after radiotherapy are more sensitive to anti-vascular endothelial growth factor receptor-2 treatment than treatment-naive tumors. Cancer Res 67:5076–5082

    Article  PubMed  CAS  Google Scholar 

  • Kreisl TN, Kim L, Moore K et al (2009) Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 27:740–745

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482

    Article  PubMed  CAS  Google Scholar 

  • Lefranc F, Rynkowski M, DeWitte O et al (2009) Present and potential future adjuvant issues in high-grade astrocytic glioma treatment. Adv Tech Stand Neurosurg 34:3–35

    Article  PubMed  CAS  Google Scholar 

  • Lutsenko SV, Kiselev SM, Severin SE (2003) Molecular mechanisms of tumor angiogenesis. Biochemistry 68:286–300

    PubMed  CAS  Google Scholar 

  • Majewski N, Nogueira V, Bhaskar P et al (2004) Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell 16:819–830

    Article  PubMed  CAS  Google Scholar 

  • Marumoto T, Tashiro A, Friedmann-Morvinski D et al (2009) Development of a novel mouse glioma model using lentiviral vectors. Nat Med 15:110–116

    Article  PubMed  CAS  Google Scholar 

  • Mathupala SP, Ko YH, Pedersen PL (2006) Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25:4777–4786

    Article  PubMed  CAS  Google Scholar 

  • Mellinghoff IK, Wang MY, Vivanco I et al (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353:2012–2024

    Article  PubMed  CAS  Google Scholar 

  • Michelakis ED, Sutendra G, Dromparis P et al (2010) Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2:31–34

    Article  CAS  Google Scholar 

  • Mrugala MM (2009) Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 72:773

    PubMed  Google Scholar 

  • Muehlbauer PM (2003) Anti-angiogenesis in cancer therapy. Semin Oncol Nurs 19:180–192

    Article  PubMed  Google Scholar 

  • Munoz DM, Guha A (2011) Mouse models to interrogate the implications of the differentiation status in the ontogeny of gliomas. Oncotarget 2:590–598

    PubMed  Google Scholar 

  • Murai T, Miyazaki Y, Nishinakamura H et al (2004) Engagement of CD44 promotes Rac activation and CD44 cleavage during tumor cell migration. J Biol Chem 279:4541–4550

    Article  PubMed  CAS  Google Scholar 

  • Nakada M, Nakada S, Demuth T et al (2007) Molecular targets of glioma invasion. Cell Mol Life Sci 64:458–478

    Article  PubMed  CAS  Google Scholar 

  • Narayana A, Kunnakkat SD, Medabalmi P et al (2012) Change in pattern of relapse after antiangiogenic therapy in high-grade glioma. Int J Radiat Oncol Biol Phys 82:77–82

    Article  PubMed  Google Scholar 

  • Noushmehr H, Weisenberger DJ, Diefes K et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17:510–522

    Article  PubMed  CAS  Google Scholar 

  • Ohgaki H, Dessen P, Jourde B et al (2004) Genetic pathways to glioblastoma: a population-based study. Cancer Res 64:6892–6899

    Article  PubMed  CAS  Google Scholar 

  • Pandita A, Aldape KD, Zadeh G et al (2004) Contrasting in vivo and in vitro fates of glioblastoma cell subpopulations with amplified EGFR. Genes Chromosom Cancer 39:29–36

    Article  PubMed  CAS  Google Scholar 

  • Papetti M, Herman IM (2002) Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol 282:C947–C970

    PubMed  CAS  Google Scholar 

  • Pardanaud L, Altmann C, Kitos P et al (1987) Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 100:339–349

    PubMed  CAS  Google Scholar 

  • Park DM, Rich JN (2009) Biology of glioma cancer stem cells. Mol Cells 28:7–12

    Article  PubMed  CAS  Google Scholar 

  • Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812

    Article  PubMed  CAS  Google Scholar 

  • Pastorino JG, Shulga N, Hoek JB (2002) Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem 277:7610–7618

    Article  PubMed  CAS  Google Scholar 

  • Patan S (2000) Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol 50:1–15

    Article  PubMed  CAS  Google Scholar 

  • Pedersen PL, Mathupala S, Rempel A et al (2002) Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim Biophys Acta 1555:14–20

    Article  PubMed  CAS  Google Scholar 

  • Piaskowski S, Bienkowski M, Stoczynska-Fidelus E et al (2011) Glioma cells showing IDH1 mutation cannot be propagated in standard cell culture conditions. Br J Cancer 104:968–970

    Article  PubMed  CAS  Google Scholar 

  • Plas DR, Thompson CB (2002) Cell metabolism in the regulation of programmed cell death. Trends Endocrinol Metab 13:75–78

    Article  PubMed  Google Scholar 

  • Puduvalli VK, Sawaya R (2000) Antiangiogenesis—therapeutic strategies and clinical implications for brain tumors. J Neurooncol 50:189–200

    Article  PubMed  CAS  Google Scholar 

  • Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3:489–501

    Article  PubMed  CAS  Google Scholar 

  • Reilley KM, Loisen DM, Bronson RT et al (2000) Nf1; Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nat Genet 26:109–113

    Article  CAS  Google Scholar 

  • Ribatti D (2004) The involvement of endothelial progenitor cells in tumor angiogenesis. J Cell Mol Med 8:294–300

    Article  PubMed  CAS  Google Scholar 

  • Ribatti D, Vacca A, Dammacco F (2003) New non-angiogenesis dependent pathways for tumour growth. Eur J Cancer 39:1835–1841

    Article  PubMed  CAS  Google Scholar 

  • Ricci-Vitiani L, Pallini R, Biffoni M et al (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468:824–828

    Article  PubMed  CAS  Google Scholar 

  • Rickman DS, Bobek MP, Misek DE et al (2001) Distinctive molecular profiles of high-grade and low-grade gliomas based on oligonucleotide microarray analysis. Cancer Res 61:6885–6891

    PubMed  CAS  Google Scholar 

  • Riemenschneider MJ, Mueller W, Betensky RA et al (2005) In situ analysis of integrin and growth factor receptor signaling pathways in human glioblastomas suggests overlapping relationships with focal adhesion kinase activation. Am J Pathol 167:1379–1387

    Article  PubMed  CAS  Google Scholar 

  • Risau W (1991) Embryonic angiogenesis factors. Pharmacol Ther 51:371–376

    Article  PubMed  CAS  Google Scholar 

  • Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  PubMed  CAS  Google Scholar 

  • Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91

    Article  PubMed  CAS  Google Scholar 

  • Rutka JT, Muller M, Hubbard SL et al (1999) Astrocytoma adhesion to extracellular matrix: functional significance of integrin and focal adhesion kinase expression. J Neuropathol Exp Neurol 58:198–209

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Martin M (2008) Brain tumour stem cells: implications for cancer therapy and regenerative medicine. Curr Stem Cell Res Ther 3:197–207

    Article  PubMed  CAS  Google Scholar 

  • Sarkaria JN, Carlson BL, Schroeder MA et al (2006) Use of an orthotopic xenograft model for assessing the effect of epidermal growth factor receptor amplification on glioblastoma radiation response. Clin Cancer Res 12:2264–2271

    Article  PubMed  CAS  Google Scholar 

  • Scherer HJ (1940) A critical review: the pathology of cerebral gliomas. J Neurol Psychiatry 3:147–177

    Article  PubMed  CAS  Google Scholar 

  • Schueneman AJ, Himmelfarb E, Geng L et al (2003) SU11248 maintenance therapy prevents tumor regrowth after fractionated irradiation of murine tumor models. Cancer Res 63:4009–4016

    PubMed  CAS  Google Scholar 

  • Schulte A, Gunther HS, Martens T et al (2012) Glioblastoma stem-like cell lines with either maintenance or loss of high-level EGFR amplification, generated via modulation of ligand concentration. Clin Cancer Res 18:1901–1913

    Article  PubMed  CAS  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  • Sipos EP, Tamargo RJ, Weingart JD et al (1994) Inhibition of tumor angiogenesis. Ann N Y Acad Sci 732:263–272

    Article  PubMed  CAS  Google Scholar 

  • Smith SA, Engelward BP (2000) In vivo repair of methylation damage in Aag 3-methyladenine DNA glycosylase null mouse cells. Nucleic Acids Res 28:3294–3300

    Article  PubMed  CAS  Google Scholar 

  • Sohr S, Engeland K (2008) RHAMM is differentially expressed in the cell cycle and downregulated by the tumor suppressor p53. Cell Cycle 7:3448–3460

    Article  PubMed  CAS  Google Scholar 

  • Stern R, Shuster S, Neudecker BA et al (2002) Lactate stimulates fibroblast expression of hyaluronan and CD44: the Warburg effect revisited. Exp Cell Res 276:24–31

    Article  PubMed  CAS  Google Scholar 

  • Stiles CD, Rowitch DH (2008) Glioma stem cells: a midterm exam. Neuron 58:832–846

    Article  PubMed  CAS  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  • Taylor MD, Poppleton H, Fuller C et al (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335

    Article  PubMed  CAS  Google Scholar 

  • Uhrbom L, Hesselager G, Nister M et al (1998) Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res 58:5275–5279

    PubMed  CAS  Google Scholar 

  • Uhrbom L, Dai C, Celestino JC et al (2002) Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res 62:5551–5558

    PubMed  CAS  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  PubMed  CAS  Google Scholar 

  • Verhaak RG, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110

    Article  PubMed  CAS  Google Scholar 

  • Virchow R (1863) Die Krankhaften Geschwulste. Hirschwald, Berlin

    Google Scholar 

  • Voest EE (2004) Angiogenesis: from understanding to targeting. Biochim Biophys Acta 1654:1

    PubMed  CAS  Google Scholar 

  • Vredenburgh JJ, Desjardins A, Herndon JE et al (2007) Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 13:1253–1259

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Chadalavada K, Wilshire J et al (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468:829–833

    Article  PubMed  CAS  Google Scholar 

  • Warburg O (1956) On respiratory impairment in cancer cells. Science 124:269–270

    PubMed  CAS  Google Scholar 

  • Watanabe T, Nobusawa S, Kleihues P et al (2009) IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 174:1149–1153

    Article  PubMed  CAS  Google Scholar 

  • Wei Q, Clarke L, Scheidenhelm DK et al (2006) High-grade glioma formation results from postnatal pten loss or mutant epidermal growth factor receptor expression in a transgenic mouse glioma model. Cancer Res 66:7429–7437

    Article  PubMed  CAS  Google Scholar 

  • Weiss WA, Burns MJ, Hackett C et al (2003) Genetic determinants of malignancy in a mouse model for oligodendroglioma. Cancer Res 63:1589–1595

    PubMed  CAS  Google Scholar 

  • Weissenberger J, Steinbach JP, Malin G et al (1997) Development and malignant progression of astrocytomas in GFAP-v-src transgenic mice. Oncogene 14:2005–2013

    Article  PubMed  CAS  Google Scholar 

  • Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507

    Article  PubMed  CAS  Google Scholar 

  • Wen P, Macdonald D, Reardon D et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972

    Article  PubMed  Google Scholar 

  • Willett CG, Kozin SV, Duda DG et al (2006) Combined vascular endothelial growth factor-targeted therapy and radiotherapy for rectal cancer: theory and clinical practice. Semin Oncol 33:S35–S40

    Article  PubMed  CAS  Google Scholar 

  • Wilting J, Christ B (1996) Embryonic angiogenesis: a review. Naturwissenschaften 83:153–164

    Article  PubMed  CAS  Google Scholar 

  • Wilting J, Brand-Saberi B, Kurz H et al (1995) Development of the embryonic vascular system. Cell Mol Biol Res 41:219–232

    PubMed  CAS  Google Scholar 

  • Xiao A, Wu H, Pandolfi PP et al (2002) Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell 1:157–168

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Yang H, Liu Y et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773

    Article  PubMed  CAS  Google Scholar 

  • Yancopoulos GD, Davis S, Gale NW et al (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248

    Article  PubMed  CAS  Google Scholar 

  • Zhang HR, Chen FL, Xu CP et al (2009) Incorporation of endothelial progenitor cells into the neovasculature of malignant glioma xenograft. J Neurooncol 93:165–174

    Article  PubMed  Google Scholar 

  • Zhao S, Lin Y, Xu W et al (2009) Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324:261–265

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Guignard F, Zhao D et al (2005) Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8:119–130

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to dedicate this review in memory of Dr. Abhijit Guha, our mentor whose dedication and love for research and neurosurgery will always inspire us.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sameer Agnihotri or Gelareh Zadeh.

About this article

Cite this article

Agnihotri, S., Burrell, K.E., Wolf, A. et al. Glioblastoma, a Brief Review of History, Molecular Genetics, Animal Models and Novel Therapeutic Strategies. Arch. Immunol. Ther. Exp. 61, 25–41 (2013). https://doi.org/10.1007/s00005-012-0203-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-012-0203-0

Keywords

Navigation